Home
Class 11
MATHS
Find (a+b)^4-(a-b)^4. Hence, evaluate (s...

Find `(a+b)^4-(a-b)^4`. Hence, evaluate `(sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4`.

Text Solution

AI Generated Solution

To solve the problem \( (a+b)^4 - (a-b)^4 \), we will use the Binomial Theorem to expand both expressions and then simplify. ### Step 1: Expand \( (a+b)^4 \) Using the Binomial Theorem, we have: \[ (a+b)^4 = \sum_{k=0}^{4} \binom{4}{k} a^{4-k} b^k \] Calculating each term: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise EXERCISE 8.2|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT ENGLISH|Exercise All Questions|75 Videos

Similar Questions

Explore conceptually related problems

Find (a+b)^4-(a-b)^4dot Hence evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4

Find (x+a)^(3)-(x-a)^(3) . Hence evaluate (sqrt(5)+sqrt(4))^(3)-(sqrt(5)-sqrt(4))^(3)

Evaluate the sqrt(4+sqrt(144))

Find (1+x)^(4) + (1-x)^(4) . Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(4)

Evaluate: sqrt (4-x^2)

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

Using binomial theorem, write the value of (a+b)^(6) + (a-b)^(6) and hence find the value of ( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6) .

Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)

Evaluate lim_(x to 2) (x^(2)-4)/((sqrt(3x-2)-(sqrt(x+2))

Find the values of a and b in each of the (3)/(sqrt(3)-sqrt(2))= a sqrt(3)-bsqrt(2)