Home
Class 12
MATHS
Statement 1 : If |veca + vecb| = |veca -...

Statement 1 : If `|veca + vecb| = |veca - vecb|`, then `veca and vecb` are perpendicular to each other.
Statement 2 : If the diagonals of a parallelogram are equal in magnitude, then the parallelogram is a rectangle.

Text Solution

Verified by Experts

The correct Answer is:
Hence `vecaandvecb` are perpendicular to each other.
Promotional Banner

Topper's Solved these Questions

  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - C|14 Videos
  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - D|10 Videos
  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos

Similar Questions

Explore conceptually related problems

If |veca+vecb|=|veca-vecb| , prove that vecaandvecb are perpendicular.

If |veca| =8, |vecb| =3 and |veca xx vecb|=12, then veca.vecb is :

(veca + vecb) xx (veca - vecb) is :

If | veca | =2, |vecb| =5 and | veca xx vecb| =8, then veca.vecb equals :

If |veca| = |vecb| = |veca + vecb| = 1 , then the value of |veca - vecb| is equal to

If 2veca*vecb = |veca| * |vecb| then the angle between veca & vecb is

If |veca+ vecb| lt | veca- vecb| , then the angle between veca and vecb can lie in the interval

If |vecaxxvecb|=4 and |veca*vecb|=2 then |veca|^(2)|vecb|^(2)=

veca. (veca xx vecb)=

If the non-zero vectors veca and vecb are perpendicular to each other, then the solution of the equation vecr xx veca = vecb is :