Home
Class 12
MATHS
For any three vectors veca, vecb, vecc t...

For any three vectors `veca, vecb, vecc` the value of `[(veca-vecb, vecb-vecc, vecc-veca)]`, is

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - D|10 Videos
  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - B|14 Videos
  • II PUC MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos

Similar Questions

Explore conceptually related problems

For any three vectors veca,vecbandvecc , prove that vectors veca-vecb,vecb-veccandvecc-veca are coplanar.

If veca, vecb, vecc are three vectors such that veca + vecb + vecc= vec0 and |veca | =2, |vecb|=3, |vecc| = 5, then value of veca. vecb+vecb.vec c+vec c. veca is :

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

veca, vecb, vec c are three vectors such that veca + vecb + vec c = vec0, |veca| =1, |vecb| =2, |vec c|=3, then : veca.vecb + vecb .vecc+ vecc.veca is equal to :

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

If veca+2vecb+3vecc=vecO , then vecaxxvecb+vecbxxvecc+veccxxveca=

For non zero vectors veca,vecb, vecc (veca xx vecb). Vecc= |veca| |vecb||vecc| holds iff: