Home
Class 12
MATHS
Write tan^-1((sqrt(1+x^2)-1)/x),x ne 0 i...

Write `tan^-1((sqrt(1+x^2)-1)/x),x ne 0` in the simplest form.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)tan^(-1)x.`
Promotional Banner

Topper's Solved these Questions

  • II PUC MARCH - 2017

    OSWAAL PUBLICATION|Exercise PART - D|9 Videos
  • II PUC MARCH - 2017

    OSWAAL PUBLICATION|Exercise PART - E|3 Videos
  • II PUC MARCH - 2017

    OSWAAL PUBLICATION|Exercise PART - B|14 Videos
  • II PUC JULY -2016

    OSWAAL PUBLICATION|Exercise PART-E (V. Answer any ten questions : )|3 Videos
  • II PUC MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos

Similar Questions

Explore conceptually related problems

Write the function tan^(-1)((sqrt(1+x^(2))-1)/x)x ne 0 , in the simplest form.

Write cot^(-1)(1/(sqrt(x^(2)-1))),xgt1 , in the simplest form.

Write cot^(-1)"" ((1)/( sqrt(x^2-1))) , x gt 1 in the simplest form

Write the inverse trignometric function tan^(-1)(x/sqrt(a^(2)-x^(2)))|x|lta , in simplest form.

Write tan^(-1) (sqrt(1-cos x)/(1+cos x)), 0 lt x lt pi in the simplest form.

"tan"^(-1)1/(sqrt(x^(2)-1))|x|gt1

If tan^(-1)(sqrt(1+x^(2))-1)/(x)=4 then x equals

Write tan^(-1)(sqrt((1-cosx)/(1+cosx))), 0 lt x lt pi in the simplest form.

The derivative of tan^(-1) [(sqrt(1 + x^(2)) - 1)/(x)] with respect to tan^(-1) x is