Home
Class 12
MATHS
Prove that int(0)^(a)f(x)dx=int(0)^(a)f(...

Prove that `int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx` and hence evaluate `int_(0)^(pi//2)(2log sin x-log sin2x)dx`.

Promotional Banner

Topper's Solved these Questions

  • II PUC MARCH - 2017

    OSWAAL PUBLICATION|Exercise PART - D|9 Videos
  • II PUC JULY -2016

    OSWAAL PUBLICATION|Exercise PART-E (V. Answer any ten questions : )|3 Videos
  • II PUC MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

int_(0)^(pi//2) log sin x dx =

Prove that int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx hence evaluate int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (b) int_(0)^(pi/2) cos^(2) xdx .

Prove that int_(0)^(a) f(x)dx=int_(0)^(a) f(a-x)dx and hence evaluate underset(0)overset(pi/2)int (cos^(5)x)/(sin^(5)+x+cos^(5)x)dx .

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (f) int_(0)^(pi)(xdx)/(a^(2)cos^(2)x + b^(2)sin^(2)x)

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (c) int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sin x) + sqrt(cos x))dx

Prove that int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x) dx when f(2a -x) = f(x) and hence evaluate int_(0)^(pi) |cos x| dx .