Home
Class 12
MATHS
The value of int(-2)^(2) (ax^(3) + bx+ c...

The value of `int_(-2)^(2) (ax^(3) + bx+ c) dx` depends on which following ?

A

Values of x only

B

Values of each of a,b and c

C

Value of c only

D

Value of b only

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{2} (ax^3 + bx + c) \, dx \) and determine its dependence, we will break down the integral into parts and evaluate each component. ### Step 1: Break down the integral We can separate the integral into three parts: \[ \int_{-2}^{2} (ax^3 + bx + c) \, dx = \int_{-2}^{2} ax^3 \, dx + \int_{-2}^{2} bx \, dx + \int_{-2}^{2} c \, dx \] ### Step 2: Evaluate each integral 1. **Evaluate \( \int_{-2}^{2} ax^3 \, dx \)**: - The function \( ax^3 \) is an odd function (since \( x^3 \) is odd). - The integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-2}^{2} ax^3 \, dx = 0 \] 2. **Evaluate \( \int_{-2}^{2} bx \, dx \)**: - The function \( bx \) is also an odd function. - Similarly, the integral of an odd function over a symmetric interval is zero: \[ \int_{-2}^{2} bx \, dx = 0 \] 3. **Evaluate \( \int_{-2}^{2} c \, dx \)**: - The function \( c \) is a constant function. - The integral of a constant \( c \) over the interval from \(-2\) to \(2\) is: \[ \int_{-2}^{2} c \, dx = c \cdot (2 - (-2)) = c \cdot 4 = 4c \] ### Step 3: Combine the results Now, combining all the results, we have: \[ \int_{-2}^{2} (ax^3 + bx + c) \, dx = 0 + 0 + 4c = 4c \] ### Conclusion The value of the integral \( \int_{-2}^{2} (ax^3 + bx + c) \, dx \) depends solely on the constant \( c \). ### Final Answer Thus, the value of the integral depends on \( c \). ---

To solve the integral \( \int_{-2}^{2} (ax^3 + bx + c) \, dx \) and determine its dependence, we will break down the integral into parts and evaluate each component. ### Step 1: Break down the integral We can separate the integral into three parts: \[ \int_{-2}^{2} (ax^3 + bx + c) \, dx = \int_{-2}^{2} ax^3 \, dx + \int_{-2}^{2} bx \, dx + \int_{-2}^{2} c \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

the value of int_(-2)^2 (ax^3+bx+c)dx depends which of the following

The value of int_-2^2 (ax^3+bx+c)dx depends on (A) the value of b (B) the value of c (C) the value of a (D) the value of a and b

Evaluate int_(1)^(4) (ax^(2)+bx+c)dx .

Find value of int (ax+b)^(3//2) dx .

int (ax^(2)+bx+c)dx

int (e ^ (ax) + sin bx) dx

int(ax^(2)+bx+c)dx

int(ax^(2)+bx+c)dx

int(ax^(2)+bx+c)dx

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. The value of int(-2)^(2) (ax^(3) + bx+ c) dx depends on which followin...

    Text Solution

    |

  2. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  3. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  4. What is int(-pi/2)^(pi/2) x sinx dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  6. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  7. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  8. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  9. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  10. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  11. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  12. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  13. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  14. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  15. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  16. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  17. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  18. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  19. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  20. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  21. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |