Home
Class 12
MATHS
What is the value of int(0)^(pi/2) log (...

What is the value of `int_(0)^(pi/2) log (tanx) dx` ?

A

0

B

1

C

`-1`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx. \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan(\frac{\pi}{2} - x)) \, dx. \] ### Step 3: Simplify the Integral Using the identity \( \tan(\frac{\pi}{2} - x) = \cot x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx. \] Since \( \cot x = \frac{1}{\tan x} \), we have: \[ \log(\cot x) = \log\left(\frac{1}{\tan x}\right) = -\log(\tan x). \] Thus, we can express \( I \) as: \[ I = \int_{0}^{\frac{\pi}{2}} -\log(\tan x) \, dx = -I. \] ### Step 4: Solve for \( I \) Now, we can add \( I \) to both sides: \[ I + I = 0 \implies 2I = 0 \implies I = 0. \] ### Conclusion Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx = 0. \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx. \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log (tan x ) dx=

The value of int_(0)^(pi//2) log (sinx) dx is

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^((pi)/(2))log(tan x)*dx

The value of int _(0)^(pi//2) log ("cosec "x) dx is

int_(0)^(pi//2)log (sec x) dx=

int_(0)^(pi) x log sinx\ dx

What is the value of int_0^(pi//2) sin 2x ln (cot x) dx

int_(0)^((pi)/(2))log(sin2x)dx

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. What is the value of int(0)^(pi/2) log (tanx) dx ?

    Text Solution

    |

  2. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  3. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  4. What is int(-pi/2)^(pi/2) x sinx dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  6. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  7. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  8. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  9. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  10. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  11. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  12. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  13. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  14. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  15. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  16. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  17. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  18. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  19. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  20. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  21. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |