Home
Class 12
MATHS
What is int(0)^(pi//2) (sin^(3)x)/(sin^(...

What is `int_(0)^(pi//2) (sin^(3)x)/(sin^(3)x + cos^(3)x) dx` ?

A

`pi`

B

`pi/2`

C

`pi/4`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \] ### Step 2: Use the Symmetry Property We can use the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \), so we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right)}{\sin^3\left(\frac{\pi}{2} - x\right) + \cos^3\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 3: Simplify the Integral Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos^3 x + \sin^3 x} \, dx \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos^3 x + \sin^3 x} \, dx \) Adding these two integrals gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^3 x}{\sin^3 x + \cos^3 x} + \frac{\cos^3 x}{\sin^3 x + \cos^3 x} \right) \, dx \] ### Step 5: Simplify the Sum The sum simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\sin^3 x + \cos^3 x} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx \] ### Step 6: Evaluate the Integral Now we can evaluate the integral: \[ 2I = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 7: Solve for \( I \) Dividing both sides by 2, we find: \[ I = \frac{\pi}{4} \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx = \frac{\pi}{4} \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx

int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x+cos^(3/2)x)dx

What is int_0^(pi//2) (sin^3 x)/(sin^3x+cos^3x) dx

int_(0)^(pi//2)(sin x)/((sin x + cos x)^(3))dx=

int_(0)^((pi)/(2))(sin^(2)x-cos^(2)x)/(sin^(3)x+cos^(3)x)dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. What is int(0)^(pi//2) (sin^(3)x)/(sin^(3)x + cos^(3)x) dx ?

    Text Solution

    |

  2. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  3. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  4. What is int(-pi/2)^(pi/2) x sinx dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  6. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  7. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  8. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  9. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  10. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  11. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  12. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  13. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  14. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  15. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  16. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  17. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  18. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  19. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  20. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  21. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |