Home
Class 12
MATHS
What is int(0)^(pi//2) sin 2x ln (cot x)...

What is `int_(0)^(pi//2) sin 2x ln (cot x) dx` equal to ?

A

`0`

B

`pi ln 2`

C

`-pi ln 2`

D

`(pi ln 2)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \ln(\cot x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the logarithm: \[ \ln(\cot x) = \ln(\cos x) - \ln(\sin x) \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \left( \ln(\cos x) - \ln(\sin x) \right) \, dx \] This can be split into two separate integrals: \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \ln(\cos x) \, dx - \int_{0}^{\frac{\pi}{2}} \sin(2x) \ln(\sin x) \, dx \] ### Step 2: Evaluate the first integral Let: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \sin(2x) \ln(\cos x) \, dx \] And: \[ I_2 = \int_{0}^{\frac{\pi}{2}} \sin(2x) \ln(\sin x) \, dx \] Now, we have: \[ I = I_1 - I_2 \] ### Step 3: Use symmetry in the integrals To evaluate \( I_1 \), we can use the substitution \( x = \frac{\pi}{2} - u \). Then, \( dx = -du \), and the limits change from \( 0 \) to \( \frac{\pi}{2} \) to \( \frac{\pi}{2} \) to \( 0 \): \[ I_1 = \int_{\frac{\pi}{2}}^{0} \sin(2(\frac{\pi}{2} - u)) \ln(\cos(\frac{\pi}{2} - u)) (-du) \] This simplifies to: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \sin(2u) \ln(\sin u) \, du = I_2 \] ### Step 4: Combine the results Since \( I_1 = I_2 \), we can substitute back into our expression for \( I \): \[ I = I_1 - I_2 = I_2 - I_2 = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sin(2x) \ln(\cot x) \, dx = 0 \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin(2x) \ln(\cot x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the logarithm: \[ \ln(\cot x) = \ln(\cos x) - \ln(\sin x) \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

Consider is int_(0)^(pi//2) ln (sinx)dx equal to ? What is int_(0)^(pi//2) ln (cos x) dx equal to ?

int_(0)^(pi//2) sec x log (sec x+tan x) dx is equal to

What is the value of int_0^(pi//2) sin 2x ln (cot x) dx

Consider is int_(0)^(pi//2) ln (sinx)dx equal to ? What is int_(0)^(pi//2)ln (sinx) dx equal to ?

int _(0)^(2pi) (sin x + |sin x|)dx is equal to

int_(0)^( pi/2)ln(sin^(2)x cos x)dx

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. What is int(0)^(pi//2) sin 2x ln (cot x) dx equal to ?

    Text Solution

    |

  2. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  3. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  4. What is int(-pi/2)^(pi/2) x sinx dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  6. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  7. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  8. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  9. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  10. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  11. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  12. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  13. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  14. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  15. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  16. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  17. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  18. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  19. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  20. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  21. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |