Home
Class 12
MATHS
What is int(-a)^(a) (x^(3) + sin x) dx ...

What is `int_(-a)^(a) (x^(3) + sin x) dx` equal to

A

a

B

`2a`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-a}^{a} (x^3 + \sin x) \, dx \), we will first determine if the integrand is an even or odd function. ### Step-by-Step Solution: 1. **Identify the function**: Let \( f(x) = x^3 + \sin x \). 2. **Check if the function is odd**: We need to find \( f(-x) \): \[ f(-x) = (-x)^3 + \sin(-x) = -x^3 - \sin x \] This can be rewritten as: \[ f(-x) = - (x^3 + \sin x) = -f(x) \] Since \( f(-x) = -f(x) \), the function \( f(x) \) is an odd function. 3. **Use the property of integrals of odd functions**: The integral of an odd function over a symmetric interval around zero is zero. Therefore: \[ \int_{-a}^{a} f(x) \, dx = 0 \] 4. **Conclusion**: Thus, we have: \[ \int_{-a}^{a} (x^3 + \sin x) \, dx = 0 \] ### Final Answer: \[ \int_{-a}^{a} (x^3 + \sin x) \, dx = 0 \]

To solve the integral \( \int_{-a}^{a} (x^3 + \sin x) \, dx \), we will first determine if the integrand is an even or odd function. ### Step-by-Step Solution: 1. **Identify the function**: Let \( f(x) = x^3 + \sin x \). 2. **Check if the function is odd**: We need to find \( f(-x) \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int x^(2) sin x dx is equal to

What is int_(0)^(pi)e^(x) sin x dx equal to ?

int_(0)^(2pi) (sin x-|sin x|) dx equal to

What is int_(-pi//2)^(pi//2) x sin x dx equal to

int_(-a)^(a)Sin x+x^(3)dx

int _(0)^(2pi) (sin x + |sin x|)dx is equal to

int 2 sin (x)dx is equal to :

int_(0)^(pi) x sin^(4) x dx is equal to

int_(0)^(pi//2) x sin x dx is equal to

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. What is int(-a)^(a) (x^(3) + sin x) dx equal to

    Text Solution

    |

  2. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  3. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  4. What is int(-pi/2)^(pi/2) x sinx dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  6. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  7. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  8. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  9. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  10. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  11. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  12. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  13. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  14. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  15. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  16. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  17. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  18. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  19. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  20. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  21. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |