Home
Class 12
MATHS
What is int(-pi/6)^(pi/6) (sin^(5)x cos^...

What is `int_(-pi/6)^(pi/6) (sin^(5)x cos^(3)x)/(x^(4)) dx` equal to ?

A

`pi/2`

B

`pi/4`

C

`pi/8`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^5 x \cos^3 x}{x^4} \, dx, \] we will determine if the integrand is an odd function. ### Step 1: Define the function Let \[ f(x) = \frac{\sin^5 x \cos^3 x}{x^4}. \] ### Step 2: Check for odd function To check if \( f(x) \) is odd, we need to compute \( f(-x) \): \[ f(-x) = \frac{\sin^5(-x) \cos^3(-x)}{(-x)^4}. \] Using the properties of sine and cosine: - \( \sin(-x) = -\sin(x) \) - \( \cos(-x) = \cos(x) \) we have: \[ f(-x) = \frac{(-\sin x)^5 (\cos x)^3}{x^4} = \frac{-\sin^5 x \cos^3 x}{x^4} = -f(x). \] ### Step 3: Conclusion about the function Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 4: Evaluate the integral For any odd function \( f(x) \), the integral over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] Thus, we have: \[ I = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} f(x) \, dx = 0. \] ### Final Answer Therefore, \[ \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^5 x \cos^3 x}{x^4} \, dx = 0. \] ---

To solve the integral \[ I = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^5 x \cos^3 x}{x^4} \, dx, \] we will determine if the integrand is an odd function. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(pi/6)^( pi/3)sin(3x)dx

int_(pi//6)^(pi//3) sin(3x)dx=

int_(0)^(pi/2)sin^(6)x cos^(5)xdx=

int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is

int _(-pi//2)^(pi//2) sin^(4) x cos^(6) x dx is equal to

int_(0)^(pi//2)sin^(4)x cos^(6)x dx=

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int_(pi//6)^(pi//3)cos^(2)x dx=

int_(pi/6)^( pi/2)(cos x)/(sin^(2)x)dx

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. What is int(-pi/6)^(pi/6) (sin^(5)x cos^(3)x)/(x^(4)) dx equal to ?

    Text Solution

    |

  2. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  3. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  4. What is int(-pi/2)^(pi/2) x sinx dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  6. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  7. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  8. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  9. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  10. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  11. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  12. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  13. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  14. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  15. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  16. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  17. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  18. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  19. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  20. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  21. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |