Home
Class 12
MATHS
Consider I = int(0)^(pi) (xdx)/(1+sinx) ...

Consider `I = int_(0)^(pi) (xdx)/(1+sinx)`
What is I equal to ?

A

`pi`

B

`0`

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} \frac{x \, dx}{1 + \sin x} \), we can use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals Using this property, we can rewrite the integral as: \[ I = \int_0^{\pi} \frac{\pi - x}{1 + \sin(\pi - x)} \, dx \] ### Step 2: Simplify the expression We know that \( \sin(\pi - x) = \sin x \). Therefore, we can rewrite the integral as: \[ I = \int_0^{\pi} \frac{\pi - x}{1 + \sin x} \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\pi} \frac{x}{1 + \sin x} \, dx \) 2. \( I = \int_0^{\pi} \frac{\pi - x}{1 + \sin x} \, dx \) Adding these two equations gives: \[ 2I = \int_0^{\pi} \frac{x + (\pi - x)}{1 + \sin x} \, dx = \int_0^{\pi} \frac{\pi}{1 + \sin x} \, dx \] ### Step 4: Simplify the integral Now we can simplify: \[ 2I = \pi \int_0^{\pi} \frac{1}{1 + \sin x} \, dx \] ### Step 5: Evaluate the integral To evaluate \( \int_0^{\pi} \frac{1}{1 + \sin x} \, dx \), we can use the substitution \( t = \tan\left(\frac{x}{2}\right) \), which gives: \[ \sin x = \frac{2t}{1 + t^2}, \quad dx = \frac{2 \, dt}{1 + t^2} \] Changing the limits accordingly: - When \( x = 0 \), \( t = 0 \) - When \( x = \pi \), \( t \to \infty \) Thus, the integral becomes: \[ \int_0^{\infty} \frac{2}{1 + \frac{2t}{1 + t^2}} \cdot \frac{2 \, dt}{1 + t^2} = \int_0^{\infty} \frac{2(1 + t^2)}{1 + 2t + t^2} \, dt \] This integral can be evaluated using partial fractions or recognizing it as a standard integral. ### Step 6: Final calculation After evaluating \( \int_0^{\pi} \frac{1}{1 + \sin x} \, dx \), we find: \[ \int_0^{\pi} \frac{1}{1 + \sin x} \, dx = \frac{\pi}{\sqrt{2}} \] Thus, substituting back, we have: \[ 2I = \pi \cdot \frac{\pi}{\sqrt{2}} \implies I = \frac{\pi^2}{2\sqrt{2}} \] ### Conclusion Therefore, the value of \( I \) is: \[ I = \frac{\pi^2}{2\sqrt{2}} \]

To solve the integral \( I = \int_0^{\pi} \frac{x \, dx}{1 + \sin x} \), we can use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)sin xdx

int_(0)^( pi)log xdx

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is int_(0)^(pi) (dx)/(1+sinx) equal to ?

int_(0)^(pi)(xdx)/(1+sinx) is equal to

int_(0)^( pi) tan xdx

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is int_(0)^(pi)((pi-x)dx)/(1+sinx) equal to ?

Consider the integrals A = int_(0)^(pi) (sinxdx)/(sinx + cos x) and B = int_(0)^(pi) (sinxdx)/(sinx - cos x) What is the value of B ?

int_(0)^( pi)1+sin xdx

The value of the integral I=int_(0)^(100pi)(dx)/(1+e^(sinx)) is equal to

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  2. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  3. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  4. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  5. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  6. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  7. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  8. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  9. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  10. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  11. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  12. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  13. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  14. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  15. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  16. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  17. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  18. The area of the figure formed by the lines ax + by +c = 0, ax - by + c...

    Text Solution

    |

  19. The value of int(a)^(b) (x^(7) + sinx)/(cosx)dx where a + b = 0 i...

    Text Solution

    |

  20. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |