Home
Class 12
MATHS
Consider I = int(0)^(pi) (xdx)/(1+sinx) ...

Consider `I = int_(0)^(pi) (xdx)/(1+sinx)`
What is `int_(0)^(pi)((pi-x)dx)/(1+sinx)` equal to ?

A

`pi`

B

`pi//2`

C

`0`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{x \, dx}{1 + \sin x} \) and find the value of \( \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \sin x} \), we can follow these steps: ### Step 1: Set up the integral Let: \[ I = \int_{0}^{\pi} \frac{x \, dx}{1 + \sin x} \] ### Step 2: Transform the second integral We need to evaluate: \[ J = \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \sin x} \] ### Step 3: Use the property of definite integrals Using the property of definite integrals, we can express \( J \) as: \[ J = \int_{0}^{\pi} \frac{\pi - x}{1 + \sin x} \, dx = \int_{0}^{\pi} \frac{\pi}{1 + \sin x} \, dx - \int_{0}^{\pi} \frac{x}{1 + \sin x} \, dx \] Thus, we can write: \[ J = \int_{0}^{\pi} \frac{\pi}{1 + \sin x} \, dx - I \] ### Step 4: Evaluate \( \int_{0}^{\pi} \frac{\pi}{1 + \sin x} \, dx \) To evaluate \( \int_{0}^{\pi} \frac{\pi}{1 + \sin x} \, dx \), we can factor out \( \pi \): \[ \int_{0}^{\pi} \frac{\pi}{1 + \sin x} \, dx = \pi \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx \] ### Step 5: Use a substitution for \( \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx \) Using the substitution \( u = \tan\left(\frac{x}{2}\right) \), we can transform the integral: \[ \sin x = \frac{2u}{1 + u^2}, \quad dx = \frac{2 \, du}{1 + u^2} \] The limits change from \( 0 \) to \( \infty \) as \( x \) goes from \( 0 \) to \( \pi \). Thus: \[ \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx = \int_{0}^{\infty} \frac{2}{(1 + u^2)(1 + \frac{2u}{1 + u^2})} \, du \] ### Step 6: Simplify and evaluate the integral After simplification, we find: \[ \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx = \frac{\pi}{2} \] Thus: \[ \int_{0}^{\pi} \frac{\pi}{1 + \sin x} \, dx = \pi \cdot \frac{\pi}{2} = \frac{\pi^2}{2} \] ### Step 7: Substitute back to find \( J \) Now substituting back into our expression for \( J \): \[ J = \frac{\pi^2}{2} - I \] ### Step 8: Relate \( J \) to \( I \) Since we have \( I + J = \frac{\pi^2}{2} \): \[ I + \left( \frac{\pi^2}{2} - I \right) = \frac{\pi^2}{2} \] This implies: \[ 2I = \frac{\pi^2}{2} \implies I = \frac{\pi^2}{4} \] ### Step 9: Find \( J \) Now substituting back to find \( J \): \[ J = \frac{\pi^2}{2} - \frac{\pi^2}{4} = \frac{\pi^2}{4} \] ### Final Answer Thus, we conclude that: \[ \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \sin x} = \frac{\pi^2}{4} \]

To solve the integral \( I = \int_{0}^{\pi} \frac{x \, dx}{1 + \sin x} \) and find the value of \( \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \sin x} \), we can follow these steps: ### Step 1: Set up the integral Let: \[ I = \int_{0}^{\pi} \frac{x \, dx}{1 + \sin x} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is int_(0)^(pi) (dx)/(1+sinx) equal to ?

int_(0)^(pi)(dx)/((1+sinx))=?

int_(0)^(pi)(xdx)/(1+sinx) is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

What is int_(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

int_(0)^( pi/2)(cosx)/(1+sinx)dx

Consider is int_(0)^(pi//2) ln (sinx)dx equal to ? What is int_(0)^(pi//2)ln (sinx) dx equal to ?

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  2. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  3. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  4. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  5. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  6. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  7. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  8. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  9. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  10. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  11. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  12. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  13. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  14. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  15. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  16. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  17. The area of the figure formed by the lines ax + by +c = 0, ax - by + c...

    Text Solution

    |

  18. The value of int(a)^(b) (x^(7) + sinx)/(cosx)dx where a + b = 0 i...

    Text Solution

    |

  19. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  20. int(0)^(2pi) sin^(5) (x/4) dx is equal to

    Text Solution

    |