Home
Class 12
MATHS
Consider I = int(0)^(pi) (xdx)/(1+sinx) ...

Consider `I = int_(0)^(pi) (xdx)/(1+sinx)`
What is `int_(0)^(pi) (dx)/(1+sinx)` equal to ?

A

`1`

B

`2`

C

`4`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
B

Given , `I = int_(0)^(pi) (xdx)/(1+sinx) "……."(i)`
`= int_(0)^(pi) ((pi-x))/(1+sin(pi-x)) dx`
`[ :' int_(0)^() f(x) dx = int_(0)^(a) f(a-x) dx]`
`= int_(0)^(pi) ((pi-x))/(1+sinx) dx"…….."(ii)`
`[ :' sin(pi-x) = sin x]`
Adding eqs. (i) and (ii) , we get
`2I = piint_(0)^(pi) (dx)/(1+sinx) "........."(iii)`
`rArr 2I = 2piint_(0)^(pi/2) (dx)/(1+sinx)`
`[ :' int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x)dx " if " f (2a-x) = f(x)]`
`rArr I = piint_(0)^(pi/2) (dx)/(1+((2tan'x2)/(1+tan^(2)'x/2)))`
`rArr I = piint_(0)^(pi/2) (sec^(2)' x/2dx)/(tan^(2)'x/2+1+2tan 'x/2)`
`= I = piint_(0)^(pi/2) ((sec^(2)'x/2))/((tan'x/2+1)^(2))`
Let `tan 'x/2 + 1 = t`
`rArr sec^(2)'x/2.(1)/2 dx = dt`
`rArr sec^(2)'x/2 dx = 2dt`
When `x = 0`, then `t = 1` and when `x = pi/2`, then `t = 2`
`:. I = 2piint_(1)^(2) (dt)/(t^(2)) = 2pi[(tan^(-2+1))/(-2+1)]_(1)^(2) = - 2pi[1/t]_(1)^(2)`
`= -2pi [1/2 - 1]`
` = - 2pi (-1/2) = pi`
From eq. (iii) .
`2I = piint_(0)^(pi) (dx)/(1+sinx)`
`rArr int_(0)^(pi) (dx)/(1+sinx) = 2/pi I`
`rArr int_(0)^(pi) (dx)/(1+sinx) = 2/pi x pi = 2 " " ( :. I = pi)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is int_(0)^(pi)((pi-x)dx)/(1+sinx) equal to ?

int_(0)^(pi)(xdx)/(1+sinx) is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

What is int_(-pi/2)^(pi/2) x sinx dx equal to ?

What is int_(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

Find int_0^(pi/2)dx/(1+sinx)

What is int_(-0)^pi (x^3+sinx) equal to

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  2. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  3. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  4. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  5. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  6. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  7. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  8. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  9. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  10. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  11. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  12. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  13. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  14. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  15. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  16. The area of the figure formed by the lines ax + by +c = 0, ax - by + c...

    Text Solution

    |

  17. The value of int(a)^(b) (x^(7) + sinx)/(cosx)dx where a + b = 0 i...

    Text Solution

    |

  18. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  19. int(0)^(2pi) sin^(5) (x/4) dx is equal to

    Text Solution

    |

  20. int(-1)^(1)x|x|dx is equal to

    Text Solution

    |