Home
Class 12
MATHS
Consider the integral I(m) = int(0)^(pi...

Consider the integral `I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx`, where m is a positive integer.
What is `I_(2) + I_(3)` equal to ?

A

`4`

B

`2`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_m = \int_0^{\pi} \frac{\sin(2mx)}{\sin(x)} \, dx \) for \( m = 2 \) and \( m = 3 \), we will calculate \( I_2 + I_3 \). ### Step 1: Calculate \( I_2 \) We start with: \[ I_2 = \int_0^{\pi} \frac{\sin(4x)}{\sin(x)} \, dx \] Using the identity \( \sin(2a) = 2 \sin(a) \cos(a) \), we can express \( \sin(4x) \) as: \[ \sin(4x) = 2 \sin(2x) \cos(2x) = 2(2 \sin(x) \cos(x)) \cos(2x) = 4 \sin(x) \cos(x) \cos(2x) \] Thus: \[ I_2 = \int_0^{\pi} 4 \cos(x) \cos(2x) \, dx \] ### Step 2: Simplify \( I_2 \) Now we can separate the integral: \[ I_2 = 4 \int_0^{\pi} \cos(x) \cos(2x) \, dx \] Using the product-to-sum identities: \[ \cos(x) \cos(2x) = \frac{1}{2}(\cos(x + 2x) + \cos(x - 2x)) = \frac{1}{2}(\cos(3x) + \cos(-x)) = \frac{1}{2}(\cos(3x) + \cos(x)) \] Thus: \[ I_2 = 4 \int_0^{\pi} \frac{1}{2}(\cos(3x) + \cos(x)) \, dx = 2 \left( \int_0^{\pi} \cos(3x) \, dx + \int_0^{\pi} \cos(x) \, dx \right) \] ### Step 3: Evaluate the integrals The integral of \( \cos(3x) \) over the interval \( [0, \pi] \): \[ \int_0^{\pi} \cos(3x) \, dx = \left[ \frac{\sin(3x)}{3} \right]_0^{\pi} = \frac{\sin(3\pi)}{3} - \frac{\sin(0)}{3} = 0 \] The integral of \( \cos(x) \) over the interval \( [0, \pi] \): \[ \int_0^{\pi} \cos(x) \, dx = \left[ \sin(x) \right]_0^{\pi} = \sin(\pi) - \sin(0) = 0 \] Thus: \[ I_2 = 2(0 + 0) = 0 \] ### Step 4: Calculate \( I_3 \) Now we calculate \( I_3 \): \[ I_3 = \int_0^{\pi} \frac{\sin(6x)}{\sin(x)} \, dx \] Using the same approach: \[ I_3 = \int_0^{\pi} 6 \cos(3x) \cos(3x) \, dx \] Using the product-to-sum identities: \[ \cos(3x) \cos(3x) = \frac{1}{2}(1 + \cos(6x)) \] Thus: \[ I_3 = 6 \int_0^{\pi} \frac{1}{2}(1 + \cos(6x)) \, dx = 3 \left( \int_0^{\pi} 1 \, dx + \int_0^{\pi} \cos(6x) \, dx \right) \] The integral of \( 1 \) over \( [0, \pi] \): \[ \int_0^{\pi} 1 \, dx = \pi \] The integral of \( \cos(6x) \) over \( [0, \pi] \): \[ \int_0^{\pi} \cos(6x) \, dx = \left[ \frac{\sin(6x)}{6} \right]_0^{\pi} = \frac{\sin(6\pi)}{6} - \frac{\sin(0)}{6} = 0 \] Thus: \[ I_3 = 3(\pi + 0) = 3\pi \] ### Step 5: Combine \( I_2 \) and \( I_3 \) Finally, we combine the results: \[ I_2 + I_3 = 0 + 3\pi = 3\pi \] ### Final Answer \[ I_2 + I_3 = 3\pi \]

To solve the integral \( I_m = \int_0^{\pi} \frac{\sin(2mx)}{\sin(x)} \, dx \) for \( m = 2 \) and \( m = 3 \), we will calculate \( I_2 + I_3 \). ### Step 1: Calculate \( I_2 \) We start with: \[ I_2 = \int_0^{\pi} \frac{\sin(4x)}{\sin(x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Consider the integral I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx , where m is a positive integer. What is I_(m) equal to ?

Consider the integral I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx , where m is a positive integer. What is I_(1) equal to ?

Consider the integral I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx , where m is a positive integer. Consider the following : 1. I_(m) - I_(m-1) is equal to 0. 2. I_(2m) gt I_(m) Which of the above is/are correct ?

The value of the integral int_(0)^(a//2) sin 2n x cot x dx, where n is a positive integer, is

Compute the integrals I = int_(0)^(pi//4) (sin x + cos x)/( 3 + sin 2 x) dx

Prove that the integral int_(0)^(pi) (sin 2 k x)/(sin x) dx equals zero if k an integer.

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  2. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  3. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  4. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  5. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  6. The area of the figure formed by the lines ax + by +c = 0, ax - by + c...

    Text Solution

    |

  7. The value of int(a)^(b) (x^(7) + sinx)/(cosx)dx where a + b = 0 i...

    Text Solution

    |

  8. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  9. int(0)^(2pi) sin^(5) (x/4) dx is equal to

    Text Solution

    |

  10. int(-1)^(1)x|x|dx is equal to

    Text Solution

    |

  11. The area bounded by the coordinate axes and the curve sqrt(x) + sqrt(y...

    Text Solution

    |

  12. Consider the integrals A = int(0)^(pi) (sinxdx)/(sinx + cos x) and B...

    Text Solution

    |

  13. Consider the integrals A = int(0)^(pi) (sinxdx)/(sinx + cos x) and B...

    Text Solution

    |

  14. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  15. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  16. What is int(-2)^(2) xdx -int(-2)^(2) [x]dx equal to , where [.] ...

    Text Solution

    |

  17. If int(-2)^(5) f(x) dx = 4 and int(0)^(5) {1+f(x)}dx = 7, then what is...

    Text Solution

    |

  18. What is int(0)^(4pi) |cos x| dx equal to ?

    Text Solution

    |

  19. What is the area bounded by the curves |y| = 1-x^(2) ?

    Text Solution

    |

  20. If int(0)^(pi/2)(dx)/(3cosx + 5) = k cot^(-1) 2, then what is the v...

    Text Solution

    |