Home
Class 12
MATHS
int(0)^(2pi) sin^(5) (x/4) dx is equal t...

`int_(0)^(2pi) sin^(5) (x/4)` dx is equal to

A

`8/15`

B

`16/15`

C

`32/15`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2\pi} \sin^5\left(\frac{x}{4}\right) \, dx \), we can follow these steps: ### Step 1: Use the identity for sine squared We can express \( \sin^5\left(\frac{x}{4}\right) \) in terms of \( \sin^2\left(\frac{x}{4}\right) \): \[ \sin^5\left(\frac{x}{4}\right) = \sin^2\left(\frac{x}{4}\right) \cdot \sin^3\left(\frac{x}{4}\right) \] Using the identity \( \sin^2\theta = 1 - \cos^2\theta \), we can write: \[ \sin^2\left(\frac{x}{4}\right) = 1 - \cos^2\left(\frac{x}{4}\right) \] ### Step 2: Rewrite the integral Now, we can rewrite the integral: \[ \int_{0}^{2\pi} \sin^5\left(\frac{x}{4}\right) \, dx = \int_{0}^{2\pi} \left(1 - \cos^2\left(\frac{x}{4}\right)\right) \sin^3\left(\frac{x}{4}\right) \, dx \] ### Step 3: Use substitution Let \( t = \cos\left(\frac{x}{4}\right) \). Then, we find \( dt = -\frac{1}{4} \sin\left(\frac{x}{4}\right) \, dx \) or \( dx = -4 \frac{dt}{\sin\left(\frac{x}{4}\right)} \). ### Step 4: Change the limits of integration When \( x = 0 \), \( t = \cos(0) = 1 \) and when \( x = 2\pi \), \( t = \cos\left(\frac{2\pi}{4}\right) = \cos(\frac{\pi}{2}) = 0 \). Thus, the limits change from \( 0 \) to \( 2\pi \) to \( 1 \) to \( 0 \). ### Step 5: Substitute and integrate Substituting into the integral: \[ \int_{1}^{0} \left(1 - t^2\right) \left(-4\right) dt = 4 \int_{0}^{1} \left(1 - t^2\right) dt \] Now, calculate the integral: \[ 4 \int_{0}^{1} (1 - t^2) dt = 4 \left[ t - \frac{t^3}{3} \right]_{0}^{1} = 4 \left( 1 - \frac{1}{3} \right) = 4 \cdot \frac{2}{3} = \frac{8}{3} \] ### Step 6: Final result Thus, the value of the integral is: \[ \int_{0}^{2\pi} \sin^5\left(\frac{x}{4}\right) \, dx = \frac{8}{3} \]

To solve the integral \( \int_{0}^{2\pi} \sin^5\left(\frac{x}{4}\right) \, dx \), we can follow these steps: ### Step 1: Use the identity for sine squared We can express \( \sin^5\left(\frac{x}{4}\right) \) in terms of \( \sin^2\left(\frac{x}{4}\right) \): \[ \sin^5\left(\frac{x}{4}\right) = \sin^2\left(\frac{x}{4}\right) \cdot \sin^3\left(\frac{x}{4}\right) \] Using the identity \( \sin^2\theta = 1 - \cos^2\theta \), we can write: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin^(4) x dx is equal to

int_(0)^(2 pi)(sin x+|sin x|)dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

int _(0)^(2pi) sin^(6) x cos^(5) x dx is equal to

int_(0)^(pi//2)sin^(5)x dx=

int_(0)^( pi)(sin nx)/(sin x)dx is equal to

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//2) sin ^(4) x dx

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. The value of int(a)^(b) (x^(7) + sinx)/(cosx)dx where a + b = 0 i...

    Text Solution

    |

  2. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  3. int(0)^(2pi) sin^(5) (x/4) dx is equal to

    Text Solution

    |

  4. int(-1)^(1)x|x|dx is equal to

    Text Solution

    |

  5. The area bounded by the coordinate axes and the curve sqrt(x) + sqrt(y...

    Text Solution

    |

  6. Consider the integrals A = int(0)^(pi) (sinxdx)/(sinx + cos x) and B...

    Text Solution

    |

  7. Consider the integrals A = int(0)^(pi) (sinxdx)/(sinx + cos x) and B...

    Text Solution

    |

  8. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  9. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  10. What is int(-2)^(2) xdx -int(-2)^(2) [x]dx equal to , where [.] ...

    Text Solution

    |

  11. If int(-2)^(5) f(x) dx = 4 and int(0)^(5) {1+f(x)}dx = 7, then what is...

    Text Solution

    |

  12. What is int(0)^(4pi) |cos x| dx equal to ?

    Text Solution

    |

  13. What is the area bounded by the curves |y| = 1-x^(2) ?

    Text Solution

    |

  14. If int(0)^(pi/2)(dx)/(3cosx + 5) = k cot^(-1) 2, then what is the v...

    Text Solution

    |

  15. What is int(1)^(3) |1-x^(4)| dx equal to ?

    Text Solution

    |

  16. What is int(0)^(pi/4) (d theta)/(1+cos theta) equal to ?

    Text Solution

    |

  17. If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) an...

    Text Solution

    |

  18. Show that the triangle of maximum area that can be inscribed in a g...

    Text Solution

    |

  19. What is int(e^(-1))^(e^(2)) |(ln x)/(x)|dx equal to ?

    Text Solution

    |

  20. What is int(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

    Text Solution

    |