Home
Class 12
MATHS
Consider the integrals A = int(0)^(pi)...

Consider the integrals
`A = int_(0)^(pi) (sinxdx)/(sinx + cos x)` and `B = int_(0)^(pi) (sinxdx)/(sinx - cos x)`
What is the value of `B` ?

A

`pi/4`

B

`pi/2`

C

`(3pi)/(4)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the integral \( B = \int_0^{\pi} \frac{\sin x \, dx}{\sin x - \cos x} \), we will follow a series of steps to simplify and evaluate this integral. ### Step 1: Rationalize the Denominator We will multiply and divide the integrand by \( \sin x + \cos x \): \[ B = \int_0^{\pi} \frac{\sin x (\sin x + \cos x)}{(\sin x - \cos x)(\sin x + \cos x)} \, dx \] ### Step 2: Simplify the Denominator Using the identity \( (a - b)(a + b) = a^2 - b^2 \), we get: \[ B = \int_0^{\pi} \frac{\sin x (\sin x + \cos x)}{\sin^2 x - \cos^2 x} \, dx \] ### Step 3: Rewrite the Denominator The denominator can be rewritten using the identity \( \sin^2 x - \cos^2 x = -\cos 2x \): \[ B = -\int_0^{\pi} \frac{\sin x (\sin x + \cos x)}{\cos 2x} \, dx \] ### Step 4: Split the Integral Now we can split the integral into two parts: \[ B = -\int_0^{\pi} \frac{\sin^2 x}{\cos 2x} \, dx - \int_0^{\pi} \frac{\sin x \cos x}{\cos 2x} \, dx \] ### Step 5: Use Trigonometric Identities Recall that \( \sin^2 x = \frac{1 - \cos 2x}{2} \) and \( \sin x \cos x = \frac{1}{2} \sin 2x \): \[ B = -\int_0^{\pi} \frac{\frac{1 - \cos 2x}{2}}{\cos 2x} \, dx - \int_0^{\pi} \frac{\frac{1}{2} \sin 2x}{\cos 2x} \, dx \] ### Step 6: Evaluate Each Integral 1. The first integral becomes: \[ -\frac{1}{2} \int_0^{\pi} \left( \frac{1}{\cos 2x} - 1 \right) \, dx \] 2. The second integral simplifies to: \[ -\frac{1}{2} \int_0^{\pi} \tan 2x \, dx \] ### Step 7: Calculate the Integrals 1. The integral of \( \tan 2x \) can be evaluated using the substitution \( u = 2x \): \[ \int \tan u \, du = -\log |\cos u| + C \] Thus, we have: \[ -\frac{1}{2} \left[ -\frac{1}{2} \log |\cos 2x| \right]_0^{\pi} \] The limits will yield \( 0 \) since \( \cos 0 = 1 \) and \( \cos 2\pi = 1 \). 2. The integral of \( 1 \) over \( [0, \pi] \) is simply \( \pi \). ### Step 8: Combine Results Putting it all together, we find: \[ B = -\frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = -\frac{\pi}{4} \] ### Final Step: Adjust for Negative Sign Since we have a negative sign in front, we conclude: \[ B = \frac{\pi}{2} \] ### Conclusion Thus, the value of \( B \) is: \[ \boxed{\frac{\pi}{2}} \]

To find the value of the integral \( B = \int_0^{\pi} \frac{\sin x \, dx}{\sin x - \cos x} \), we will follow a series of steps to simplify and evaluate this integral. ### Step 1: Rationalize the Denominator We will multiply and divide the integrand by \( \sin x + \cos x \): \[ B = \int_0^{\pi} \frac{\sin x (\sin x + \cos x)}{(\sin x - \cos x)(\sin x + \cos x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Consider the integrals A = int_(0)^(pi) (sinxdx)/(sinx + cos x) and B = int_(0)^(pi) (sinxdx)/(sinx - cos x) Which one of the following is correct ?

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx and B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_(0)^(pi)(x)/(1+sinx)dx .

int_0^(pi/2) x^2sinxdx

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx, B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_0^(pi//2)(sinx-cos x)/(1+sinx cos x) dx

int_(0)^(pi//4)x^(2)sinxdx

int(sinxdx)/(1-cos x)=

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. The area bounded by the coordinate axes and the curve sqrt(x) + sqrt(y...

    Text Solution

    |

  2. Consider the integrals A = int(0)^(pi) (sinxdx)/(sinx + cos x) and B...

    Text Solution

    |

  3. Consider the integrals A = int(0)^(pi) (sinxdx)/(sinx + cos x) and B...

    Text Solution

    |

  4. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  5. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  6. What is int(-2)^(2) xdx -int(-2)^(2) [x]dx equal to , where [.] ...

    Text Solution

    |

  7. If int(-2)^(5) f(x) dx = 4 and int(0)^(5) {1+f(x)}dx = 7, then what is...

    Text Solution

    |

  8. What is int(0)^(4pi) |cos x| dx equal to ?

    Text Solution

    |

  9. What is the area bounded by the curves |y| = 1-x^(2) ?

    Text Solution

    |

  10. If int(0)^(pi/2)(dx)/(3cosx + 5) = k cot^(-1) 2, then what is the v...

    Text Solution

    |

  11. What is int(1)^(3) |1-x^(4)| dx equal to ?

    Text Solution

    |

  12. What is int(0)^(pi/4) (d theta)/(1+cos theta) equal to ?

    Text Solution

    |

  13. If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) an...

    Text Solution

    |

  14. Show that the triangle of maximum area that can be inscribed in a g...

    Text Solution

    |

  15. What is int(e^(-1))^(e^(2)) |(ln x)/(x)|dx equal to ?

    Text Solution

    |

  16. What is int(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

    Text Solution

    |

  17. The area bounded by the curve |x | + |y| = 1is

    Text Solution

    |

  18. Let f(n) = [1/4 + n/1000], where [x] denote the integral part of x. ...

    Text Solution

    |

  19. The value of int(0)^(pi/4) sqrt(tanx) dx+int(0)^(pi/4) sqrt(cotx) dxis...

    Text Solution

    |

  20. What is the area of the region bounded by theparabolas y^2 = 6 (x - 1)...

    Text Solution

    |