Home
Class 12
MATHS
Consider the functions f(x) = g(x) an...

Consider the functions
`f(x) = g(x)` and `g(x) = [1/x]`
Where `[.]` is the greatest integer function.
What is `int_(1/3)^(1) f(x) dx` equal to ?

A

`37/72`

B

`2/3`

C

`17/72`

D

`37/144`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{\frac{1}{3}}^{1} f(x) \, dx \) where \( f(x) = g(x) \) and \( g(x) = \left\lfloor \frac{1}{x} \right\rfloor \), with \( \left\lfloor . \right\rfloor \) denoting the greatest integer function. ### Step 1: Determine the function \( g(x) \) over the interval \( \left[\frac{1}{3}, 1\right] \) 1. For \( x \in \left[\frac{1}{3}, \frac{1}{2}\right) \): \[ g(x) = \left\lfloor \frac{1}{x} \right\rfloor \] - When \( x = \frac{1}{3} \), \( \frac{1}{x} = 3 \) so \( g\left(\frac{1}{3}\right) = 3 \). - When \( x = \frac{1}{2} \), \( \frac{1}{x} = 2 \) so \( g\left(\frac{1}{2}\right) = 2 \). - Therefore, \( g(x) = 3 \) for \( x \in \left[\frac{1}{3}, \frac{1}{2}\right) \). 2. For \( x \in \left[\frac{1}{2}, 1\right] \): - When \( x = \frac{1}{2} \), \( \frac{1}{x} = 2 \) so \( g\left(\frac{1}{2}\right) = 2 \). - When \( x = 1 \), \( \frac{1}{x} = 1 \) so \( g(1) = 1 \). - Therefore, \( g(x) = 2 \) for \( x \in \left[\frac{1}{2}, 1\right) \). ### Step 2: Break the integral into two parts We can split the integral as follows: \[ \int_{\frac{1}{3}}^{1} f(x) \, dx = \int_{\frac{1}{3}}^{\frac{1}{2}} g(x) \, dx + \int_{\frac{1}{2}}^{1} g(x) \, dx \] ### Step 3: Evaluate each integral 1. **First integral** \( \int_{\frac{1}{3}}^{\frac{1}{2}} g(x) \, dx \): \[ g(x) = 3 \quad \text{for } x \in \left[\frac{1}{3}, \frac{1}{2}\right) \] \[ \int_{\frac{1}{3}}^{\frac{1}{2}} g(x) \, dx = \int_{\frac{1}{3}}^{\frac{1}{2}} 3 \, dx = 3 \left[ x \right]_{\frac{1}{3}}^{\frac{1}{2}} = 3 \left( \frac{1}{2} - \frac{1}{3} \right) = 3 \left( \frac{3 - 2}{6} \right) = 3 \cdot \frac{1}{6} = \frac{1}{2} \] 2. **Second integral** \( \int_{\frac{1}{2}}^{1} g(x) \, dx \): \[ g(x) = 2 \quad \text{for } x \in \left[\frac{1}{2}, 1\right) \] \[ \int_{\frac{1}{2}}^{1} g(x) \, dx = \int_{\frac{1}{2}}^{1} 2 \, dx = 2 \left[ x \right]_{\frac{1}{2}}^{1} = 2 \left( 1 - \frac{1}{2} \right) = 2 \cdot \frac{1}{2} = 1 \] ### Step 4: Combine the results Now, we combine both integrals: \[ \int_{\frac{1}{3}}^{1} f(x) \, dx = \frac{1}{2} + 1 = \frac{3}{2} \] ### Final Answer Thus, the value of \( \int_{\frac{1}{3}}^{1} f(x) \, dx \) is \( \frac{3}{2} \).

To solve the problem, we need to evaluate the integral \( \int_{\frac{1}{3}}^{1} f(x) \, dx \) where \( f(x) = g(x) \) and \( g(x) = \left\lfloor \frac{1}{x} \right\rfloor \), with \( \left\lfloor . \right\rfloor \) denoting the greatest integer function. ### Step 1: Determine the function \( g(x) \) over the interval \( \left[\frac{1}{3}, 1\right] \) 1. For \( x \in \left[\frac{1}{3}, \frac{1}{2}\right) \): \[ g(x) = \left\lfloor \frac{1}{x} \right\rfloor \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is the greatest integer function. What is int_(1/3)^(1/2) g(x)dx equal to ?

Consider the functions f(x)=xg(x) and g(x)=0 wherel.lis the greatest integer function.What is int_((1)/(3))^((1)/(2))g(x)dx equal to?

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the greatest integer function. What is lim_(xto0^(-)) (f(x) equal to?

Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the greatest integer function. What is lim_(xto0^(+))f(x) equal to?

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. Consider the integrals A = int(0)^(pi) (sinxdx)/(sinx + cos x) and B...

    Text Solution

    |

  2. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  3. Consider the functions f(x) = g(x) and g(x) = [1/x] Where [.] is...

    Text Solution

    |

  4. What is int(-2)^(2) xdx -int(-2)^(2) [x]dx equal to , where [.] ...

    Text Solution

    |

  5. If int(-2)^(5) f(x) dx = 4 and int(0)^(5) {1+f(x)}dx = 7, then what is...

    Text Solution

    |

  6. What is int(0)^(4pi) |cos x| dx equal to ?

    Text Solution

    |

  7. What is the area bounded by the curves |y| = 1-x^(2) ?

    Text Solution

    |

  8. If int(0)^(pi/2)(dx)/(3cosx + 5) = k cot^(-1) 2, then what is the v...

    Text Solution

    |

  9. What is int(1)^(3) |1-x^(4)| dx equal to ?

    Text Solution

    |

  10. What is int(0)^(pi/4) (d theta)/(1+cos theta) equal to ?

    Text Solution

    |

  11. If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) an...

    Text Solution

    |

  12. Show that the triangle of maximum area that can be inscribed in a g...

    Text Solution

    |

  13. What is int(e^(-1))^(e^(2)) |(ln x)/(x)|dx equal to ?

    Text Solution

    |

  14. What is int(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

    Text Solution

    |

  15. The area bounded by the curve |x | + |y| = 1is

    Text Solution

    |

  16. Let f(n) = [1/4 + n/1000], where [x] denote the integral part of x. ...

    Text Solution

    |

  17. The value of int(0)^(pi/4) sqrt(tanx) dx+int(0)^(pi/4) sqrt(cotx) dxis...

    Text Solution

    |

  18. What is the area of the region bounded by theparabolas y^2 = 6 (x - 1)...

    Text Solution

    |

  19. Three sides of a trapezium are each equal to 6 cm. Let alpha in (0,pi...

    Text Solution

    |

  20. Three sides of a trapezium are each equal to 6 cm. Let alpha in (0,pi...

    Text Solution

    |