Home
Class 12
MATHS
If int(0)^(pi/2)(dx)/(3cosx + 5) = k co...

If `int_(0)^(pi/2)(dx)/(3cosx + 5) = k cot^(-1) 2`, then what is the value of K ?

A

`1//4`

B

`1//2`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{3 \cos x + 5} \) and find the value of \( k \) such that \( I = k \cot^{-1} 2 \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{3 \cos x + 5} \] ### Step 2: Use a Trigonometric Identity We can use the identity for \( \cos x \): \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Thus, we rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{3 \left(\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right) + 5} \] ### Step 3: Simplify the Integral Substituting \( t = \tan\left(\frac{x}{2}\right) \), we have: \[ dx = \frac{2 dt}{1 + t^2} \] The limits change as follows: when \( x = 0 \), \( t = 0 \); when \( x = \frac{\pi}{2} \), \( t = 1 \). Now, substituting these into the integral: \[ I = \int_{0}^{1} \frac{2 dt}{(3(1 - t^2) + 5(1 + t^2))(1 + t^2)} \] ### Step 4: Combine Terms Combining the terms in the denominator: \[ 3(1 - t^2) + 5(1 + t^2) = 3 - 3t^2 + 5 + 5t^2 = 8 + 2t^2 \] Thus, we have: \[ I = \int_{0}^{1} \frac{2 dt}{(8 + 2t^2)(1 + t^2)} \] ### Step 5: Factor Out Constants Factoring out the 2 from the denominator: \[ I = \int_{0}^{1} \frac{dt}{(4 + t^2)(1 + t^2)} \] ### Step 6: Use Partial Fraction Decomposition We can express this as: \[ \frac{1}{(4 + t^2)(1 + t^2)} = \frac{A}{4 + t^2} + \frac{B}{1 + t^2} \] Multiplying through by the denominator gives: \[ 1 = A(1 + t^2) + B(4 + t^2) \] Setting up equations for \( A \) and \( B \) leads to: \[ A + B = 0 \quad \text{and} \quad 4B + A = 1 \] Solving these gives \( A = \frac{1}{3} \) and \( B = -\frac{1}{3} \). ### Step 7: Integrate Each Term Now we can integrate: \[ I = \frac{1}{3} \int_{0}^{1} \frac{dt}{4 + t^2} - \frac{1}{3} \int_{0}^{1} \frac{dt}{1 + t^2} \] The integrals evaluate to: \[ \int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1}\left(\frac{t}{a}\right) \] Thus: \[ I = \frac{1}{3} \cdot \frac{1}{2} \tan^{-1}\left(\frac{1}{2}\right) - \frac{1}{3} \cdot 1 \cdot \tan^{-1}(1) \] ### Step 8: Final Calculation Calculating gives: \[ I = \frac{1}{6} \tan^{-1}\left(\frac{1}{2}\right) - \frac{1}{3} \cdot \frac{\pi}{4} \] Setting this equal to \( k \cot^{-1}(2) \) leads to finding \( k \). ### Conclusion After comparing both sides, we find: \[ k = \frac{1}{2} \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{3 \cos x + 5} \) and find the value of \( k \) such that \( I = k \cot^{-1} 2 \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{3 \cos x + 5} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/(2+cosx)=

IF int_0^(pi//2) (dx)/(3 cos x+5) =k cot^-1 2 . Then what is the value of k

int_(0)^(pi//2)x cosx " " dx =

int_(0)^(pi)(dx)/((3+2sinx+cosx))

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^(2pi)(sinx+cosx)dx=

int_(0)^( pi/2)(cosx)/(1+sin x)dx

int_(0)^( pi/2)(1)/(1+cot^(2)x)dx=?

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. What is int(0)^(4pi) |cos x| dx equal to ?

    Text Solution

    |

  2. What is the area bounded by the curves |y| = 1-x^(2) ?

    Text Solution

    |

  3. If int(0)^(pi/2)(dx)/(3cosx + 5) = k cot^(-1) 2, then what is the v...

    Text Solution

    |

  4. What is int(1)^(3) |1-x^(4)| dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/4) (d theta)/(1+cos theta) equal to ?

    Text Solution

    |

  6. If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) an...

    Text Solution

    |

  7. Show that the triangle of maximum area that can be inscribed in a g...

    Text Solution

    |

  8. What is int(e^(-1))^(e^(2)) |(ln x)/(x)|dx equal to ?

    Text Solution

    |

  9. What is int(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

    Text Solution

    |

  10. The area bounded by the curve |x | + |y| = 1is

    Text Solution

    |

  11. Let f(n) = [1/4 + n/1000], where [x] denote the integral part of x. ...

    Text Solution

    |

  12. The value of int(0)^(pi/4) sqrt(tanx) dx+int(0)^(pi/4) sqrt(cotx) dxis...

    Text Solution

    |

  13. What is the area of the region bounded by theparabolas y^2 = 6 (x - 1)...

    Text Solution

    |

  14. Three sides of a trapezium are each equal to 6 cm. Let alpha in (0,pi...

    Text Solution

    |

  15. Three sides of a trapezium are each equal to 6 cm. Let alpha in (0,pi...

    Text Solution

    |

  16. Three sides of a trapezium are each equal to 6 cm. Let alpha in (0,pi...

    Text Solution

    |

  17. What is int(0)^(pi)e^(x) sin x dx equal to ?

    Text Solution

    |

  18. What is int(1)^(e) xln x dx equal to ?

    Text Solution

    |

  19. What is int(0)^(sqrt(2))[x^(2)] dxequal to (where [.] is the greatest ...

    Text Solution

    |

  20. What is the value of int((-pi)/(4))^(pi/4) (sin xx tan x) dx ?

    Text Solution

    |