Home
Class 12
MATHS
Let A =[{:(1,0),(0,-1):}]and B =[{:(1,x)...

Let A =`[{:(1,0),(0,-1):}]and B =[{:(1,x),(0,1):}]` If AB = BA, then what is the value of x ?

A

-1

B

0

C

1

D

Any real number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the matrices \( A \) and \( B \) commute, meaning \( AB = BA \). Given: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) by matrix \( B \): \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot 0 = 1 \) - First row, second column: \( 1 \cdot x + 0 \cdot 1 = x \) - Second row, first column: \( 0 \cdot 1 + (-1) \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot x + (-1) \cdot 1 = -1 \) Thus, we have: \[ AB = \begin{pmatrix} 1 & x \\ 0 & -1 \end{pmatrix} \] ### Step 2: Calculate \( BA \) Now, we calculate \( BA \): \[ BA = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + x \cdot 0 = 1 \) - First row, second column: \( 1 \cdot 0 + x \cdot (-1) = -x \) - Second row, first column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 1 \cdot (-1) = -1 \) Thus, we have: \[ BA = \begin{pmatrix} 1 & -x \\ 0 & -1 \end{pmatrix} \] ### Step 3: Set \( AB \) equal to \( BA \) Since we want \( AB = BA \), we set the two matrices equal to each other: \[ \begin{pmatrix} 1 & x \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -x \\ 0 & -1 \end{pmatrix} \] ### Step 4: Compare the elements From the equality of the matrices, we can compare the corresponding elements: 1. From the first row, second column: \( x = -x \) ### Step 5: Solve for \( x \) Solving the equation \( x = -x \): \[ 2x = 0 \implies x = 0 \] Thus, the value of \( x \) is: \[ \boxed{0} \]

To solve the problem, we need to find the value of \( x \) such that the matrices \( A \) and \( B \) commute, meaning \( AB = BA \). Given: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( AB \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}] , then what is the value of x ?

if A=[{:(1,0),(0,1):}]and B=[{:(a,c),(b,d):}], then show that (AB)'=B'A'

If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |A^(-1)| ?

Given A=[{:(1,0),(0,-1):}] and B=[{:(0,1),(1,0):}] Write the value of AB.

If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0),(0,0,1):}] then what is the value of x?

A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB = BA Select the correct answer using the codes given below.

If A=[{:(3,1),(0,4):}] and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB=BA Select the correct answer using the code given below :

If A = [(0,-i),(i,0)] B = [(1,0),(0,-1)] then A B+ BA is

If {:A=[(1,x),(x^7,4y)]a,B=[(-3,1),(1,0)]and adjA+B=[(1,0),(0,1)]:} , then the values of x and y are respectively

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If the matrix [{:(cos theta,sin theta,0),(sin theta,cos theta,0),(0,0,...

    Text Solution

    |

  2. For what values of k, does the system of linear equations x+y+z=2, 2x+...

    Text Solution

    |

  3. Let A =[{:(1,0),(0,-1):}]and B =[{:(1,x),(0,1):}] If AB = BA, then wha...

    Text Solution

    |

  4. If a matrix B is obtained from a square matrix A by interchanging any ...

    Text Solution

    |

  5. Let A = (a(ij))(n xx n) and adj A = (alpha(ij)) If A = [{:(1,2,3),(4...

    Text Solution

    |

  6. If A and B are non-singular square matrices of same order then adj(AB)...

    Text Solution

    |

  7. M is a matrix with real entries given by M=[{:(4,k,0),(6,3,0),(2,t,k):...

    Text Solution

    |

  8. Let A = [{:(1,1,1),(1,1,1),(1,1,1):}] be a square matrix of order 3. T...

    Text Solution

    |

  9. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  10. If A is a matrix of order p xx q and B is a matrix of order s xx t, un...

    Text Solution

    |

  11. If A is a square matrix such that A-A^(T) = 0, then which one of the ...

    Text Solution

    |

  12. The largest value of a third order determinant whose elements are equa...

    Text Solution

    |

  13. What is the inverse of A=[{:(1+i,1+i),(-1+i,1-i):}]?

    Text Solution

    |

  14. In respect of the equation [{:(2,3),(4,6):}][{:(x),(y):}]=[{:(" "5),(c...

    Text Solution

    |

  15. If A^(-1)=[{:(1,-2),(-2,2):}], what is det (A) ?

    Text Solution

    |

  16. From the matrix equation AB = AC, which one of the following can be co...

    Text Solution

    |

  17. What is the value of |{:(a,b,c),(b,c,a),(c,a,b):}| "if a"^(3) + b^(3) ...

    Text Solution

    |

  18. If A = [{:(1,2),(0,3):}] is a 2 xx 2 matrix and f(x) = x^(2) - x + 2 i...

    Text Solution

    |

  19. If A is a non-null row matrix with 5 columns and B is a non-null colum...

    Text Solution

    |

  20. Assertion (A) : If A = ({:(2,3),(1,4):}), B = ({:(1,0),(0,1):}), then ...

    Text Solution

    |