Home
Class 12
MATHS
If A is any 2 xx matrix such that [{:(1,...

If A is any 2 `xx` matrix such that `[{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}]` then what is A equal to ?

A

`[{:(-5,1),(-2,2):}]`

B

`[{:(-5,-2),(1,2):}]`

C

`[{:(-5,-2),(2,1):}]`

D

`[{:(5,2),(-2,-1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) given that: \[ B \cdot A = C \] where \[ B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} -1 & 0 \\ 6 & 3 \end{pmatrix} \] ### Step 1: Find the inverse of matrix \( B \) To find \( A \), we can rearrange the equation: \[ A = B^{-1} \cdot C \] First, we need to calculate the inverse of matrix \( B \). The formula for the inverse of a \( 2 \times 2 \) matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is given by: \[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( B \): - \( a = 1 \) - \( b = 2 \) - \( c = 0 \) - \( d = 3 \) **Calculate the determinant of \( B \)**: \[ \text{det}(B) = ad - bc = (1)(3) - (0)(2) = 3 \] **Now, apply the inverse formula**: \[ B^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \] ### Step 2: Multiply \( B^{-1} \) with \( C \) Now, we can find \( A \): \[ A = B^{-1} \cdot C = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 6 & 3 \end{pmatrix} \] **Perform the multiplication**: 1. First row, first column: \[ 1 \cdot (-1) + \left(-\frac{2}{3}\right) \cdot 6 = -1 - 4 = -5 \] 2. First row, second column: \[ 1 \cdot 0 + \left(-\frac{2}{3}\right) \cdot 3 = 0 - 2 = -2 \] 3. Second row, first column: \[ 0 \cdot (-1) + \frac{1}{3} \cdot 6 = 0 + 2 = 2 \] 4. Second row, second column: \[ 0 \cdot 0 + \frac{1}{3} \cdot 3 = 0 + 1 = 1 \] Thus, we have: \[ A = \begin{pmatrix} -5 & -2 \\ 2 & 1 \end{pmatrix} \] ### Final Answer The matrix \( A \) is: \[ A = \begin{pmatrix} -5 & -2 \\ 2 & 1 \end{pmatrix} \]

To solve the problem, we need to find the matrix \( A \) given that: \[ B \cdot A = C \] where ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}) , then what is A equal to ?

If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}) , then what is A equal to ?

If [{:(1,3),(0,1):}]A=[{:(1,-1),(0,1):}] , then what is the matrix A ?

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1,0],[0,1]] then the sum of the elements in A is

Let A be a 3 xx 3 matrix such that adj A = [{:(,2,-1,1),(,-1,0,2),(,1,-2,-1):}] and B =adj (adj A) . If |A| = lambda and |(B^(-1))^T| = mu then the ordered pair (|lambda|, mu) is equal to

If X is a 2xx3 matrix such that |X'X|!=0 and A=I_(2)-X(X'X)^(-1)X', then A^(2) is equal to

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Assertion (A) : If A = ({:(2,3),(1,4):}), B = ({:(1,0),(0,1):}), then ...

    Text Solution

    |

  2. Assertion (A) : If A=({:(cos alpha,sin alpha),(cos alpha,sin alpha):})...

    Text Solution

    |

  3. If A is any 2 xx matrix such that [{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}...

    Text Solution

    |

  4. If A is a 3 xx 3 matrix such that |A| = 4, then what is A(adj A) equal...

    Text Solution

    |

  5. [[x,x^2, 1+x^2],[y, y^2, 1+y^2],[z, z^2, 1+z^2]] where x,y,z are disti...

    Text Solution

    |

  6. Under which of the following condition(s), will the matrix A=[{:(0,0,q...

    Text Solution

    |

  7. Consider the following statements : 1. If det A = 0, then det (adj A...

    Text Solution

    |

  8. Let A be an m xx n matrix. Under which one of the following conditions...

    Text Solution

    |

  9. Let A and B be two matrices of order n xx n. Let A be non-singular and...

    Text Solution

    |

  10. Let A be a square matrix of order n xx n where n ge 2. Let B be a mat...

    Text Solution

    |

  11. What should be the value of k so that the system of linear equations ...

    Text Solution

    |

  12. The matrix A = [{:(1,2),(2,2):}] satisfies which one of the following ...

    Text Solution

    |

  13. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  14. For what value of p, is the system of equation p^3x+(p+1)^3y=(p+2)^3 a...

    Text Solution

    |

  15. If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}], then what is the...

    Text Solution

    |

  16. Let A=[a(ij)](nxxn) be a square matrix and let c(ij) be cofactor of a...

    Text Solution

    |

  17. If omega is the cube root of unity, then what is one root of the equat...

    Text Solution

    |

  18. If A = [{:(2,2),(2,2):}], then what is A^(n) equal to ?

    Text Solution

    |

  19. If the least number of zeroes in a lower triangular matrix is 10, then...

    Text Solution

    |

  20. If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0...

    Text Solution

    |