Home
Class 12
MATHS
If omega is the cube root of unity, then...

If `omega` is the cube root of unity, then what is one root of the equation `|{:(x^(2),-2x,-2omega^(2)),(2,omega,-omega),(0,omega,1):}|=0` ?

A

1

B

-2

C

2

D

`omega`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant \( |{:(x^{2},-2x,-2\omega^{2}),(2,\omega,-\omega),(0,\omega,1):}|=0 \), we will follow these steps: ### Step 1: Set up the determinant We have the determinant of a 3x3 matrix: \[ \begin{vmatrix} x^2 & -2x & -2\omega^2 \\ 2 & \omega & -\omega \\ 0 & \omega & 1 \end{vmatrix} \] ### Step 2: Calculate the determinant using the cofactor expansion Using the cofactor expansion along the first row, we have: \[ \text{Det} = x^2 \begin{vmatrix} \omega & -\omega \\ \omega & 1 \end{vmatrix} - (-2x) \begin{vmatrix} 2 & -\omega \\ 0 & 1 \end{vmatrix} - 2\omega^2 \begin{vmatrix} 2 & \omega \\ 0 & \omega \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} \omega & -\omega \\ \omega & 1 \end{vmatrix} = \omega \cdot 1 - (-\omega) \cdot \omega = \omega + \omega^2 \] 2. For the second determinant: \[ \begin{vmatrix} 2 & -\omega \\ 0 & 1 \end{vmatrix} = 2 \cdot 1 - 0 \cdot (-\omega) = 2 \] 3. For the third determinant: \[ \begin{vmatrix} 2 & \omega \\ 0 & \omega \end{vmatrix} = 2 \cdot \omega - 0 \cdot \omega = 2\omega \] ### Step 4: Substitute back into the determinant equation Now substituting these values back into the determinant: \[ \text{Det} = x^2 (\omega + \omega^2) + 2x \cdot 2 - 2\omega^2 \cdot 2\omega \] \[ = x^2 (\omega + \omega^2) + 4x - 4\omega^2 \] ### Step 5: Use the property of cube roots of unity Since \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \), we have \( \omega + \omega^2 = -1 \). Thus: \[ \text{Det} = x^2 (-1) + 4x - 4\omega^2 \] \[ = -x^2 + 4x - 4\omega^2 \] ### Step 6: Set the determinant to zero Setting the determinant to zero gives: \[ -x^2 + 4x - 4\omega^2 = 0 \] Multiplying through by -1: \[ x^2 - 4x + 4\omega^2 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -4, c = 4\omega^2 \): \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 4\omega^2}}{2 \cdot 1} \] \[ = \frac{4 \pm \sqrt{16 - 16\omega^2}}{2} \] \[ = \frac{4 \pm 4\sqrt{1 - \omega^2}}{2} \] \[ = 2 \pm 2\sqrt{1 - \omega^2} \] ### Step 8: Find one root Since \( \omega^2 = \frac{-1 - \sqrt{3}i}{2} \) (for cube roots of unity), we can calculate \( 1 - \omega^2 \) and find the roots. However, we can also directly see that one of the roots will be: \[ x = 2 \] ### Final Answer Thus, one root of the equation is \( x = 2 \). ---

To solve the equation given by the determinant \( |{:(x^{2},-2x,-2\omega^{2}),(2,\omega,-\omega),(0,\omega,1):}|=0 \), we will follow these steps: ### Step 1: Set up the determinant We have the determinant of a 3x3 matrix: \[ \begin{vmatrix} x^2 & -2x & -2\omega^2 \\ 2 & \omega & -\omega \\ ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

If omega is an imaginary cube root of unity, then a root of equation |(x+1,omega,omega^2),(omega,x+omega^2,1),(omega^2,1,x+2)|=0,can be

If 1,omega,omega^(2) are the cube roots of unity, then the roots of the equation (x-1)^(3)+8=0 are

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

if 1,omega,omega^(2) root of the unity then The roots of the equation (x-1)^(3)+8=0 are

If omega is the imaginary cube root of unity, then what is (2-omega+2omega^(2))^(27) equal to ?

If omega is a complex cube root of unity, then what is the value of 1-(1)/((1+omega))-(1)/((1+omega^(2))) ?

If omegais an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}], then what is the...

    Text Solution

    |

  2. Let A=[a(ij)](nxxn) be a square matrix and let c(ij) be cofactor of a...

    Text Solution

    |

  3. If omega is the cube root of unity, then what is one root of the equat...

    Text Solution

    |

  4. If A = [{:(2,2),(2,2):}], then what is A^(n) equal to ?

    Text Solution

    |

  5. If the least number of zeroes in a lower triangular matrix is 10, then...

    Text Solution

    |

  6. If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0...

    Text Solution

    |

  7. If AB=[{:(4,11),(4,5):}]and A=[{:(3,2),(1,2):}], then what is the valu...

    Text Solution

    |

  8. The determinant |{:(a+b+c,a+b,a),(4a+3b+2c,3a+2b,2a),(10a+6b+3c,6a+3b,...

    Text Solution

    |

  9. If X = [{:(1,-2),(0,3):}], and I is a 2 xx 2 identity matrix, then X^(...

    Text Solution

    |

  10. If the matrix B is the adjoint of the square matrix A and alpha is the...

    Text Solution

    |

  11. What is the determinant |{:(bc,a,a^(2)),(ca,b,b^(2)),(ab,c,c^(2)):}| e...

    Text Solution

    |

  12. If x^(2)+y^(2)+z^(2)=1, then what is the value of |{:(1,z,-y),(-z,1,x)...

    Text Solution

    |

  13. If |A(n xx n)|=3 and |"adj A"|=243, what is the value of n?

    Text Solution

    |

  14. Under what condition does A (BC) = (AB)C hold, where A, B, C are three...

    Text Solution

    |

  15. If A is matrix of order 3 xx 2 and B is matrix of order 2 xx 3, then w...

    Text Solution

    |

  16. If [{:(5,0),(0,7):}]^(-1)[{:(x),(-y):}]=[{:(-1),(2):}], then which on...

    Text Solution

    |

  17. Which one of the following statement is correct ? The system of linear...

    Text Solution

    |

  18. Suppose the system of equations a(1)x+b(1)y+c(1)z=d(1) a(2)x+b(2)y...

    Text Solution

    |

  19. If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0...

    Text Solution

    |

  20. If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |...

    Text Solution

    |