Home
Class 12
MATHS
If A = [{:(2,2),(2,2):}], then what is A...

If `A = [{:(2,2),(2,2):}]`, then what is `A^(n)` equal to ?

A

`[{:(2^(n),2^(n)),(2^(n),2^(n)):}]`

B

`[{:(2n,2n),(2n,2n):}]`

C

`[{:(2^(2n-1),2^(2n-1)),(2^(2n-1),2^(2n-1)):}]`

D

`[{:(2^(2n+1),2^(2n+1)),(2^(2n+1),2^(2n+1)):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^n \) for the matrix \( A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + 2 \cdot 2 = 4 + 4 = 8 \) - First row, second column: \( 2 \cdot 2 + 2 \cdot 2 = 4 + 4 = 8 \) - Second row, first column: \( 2 \cdot 2 + 2 \cdot 2 = 4 + 4 = 8 \) - Second row, second column: \( 2 \cdot 2 + 2 \cdot 2 = 4 + 4 = 8 \) Thus, \[ A^2 = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 8 \cdot 2 + 8 \cdot 2 = 16 + 16 = 32 \) - First row, second column: \( 8 \cdot 2 + 8 \cdot 2 = 16 + 16 = 32 \) - Second row, first column: \( 8 \cdot 2 + 8 \cdot 2 = 16 + 16 = 32 \) - Second row, second column: \( 8 \cdot 2 + 8 \cdot 2 = 16 + 16 = 32 \) Thus, \[ A^3 = \begin{pmatrix} 32 & 32 \\ 32 & 32 \end{pmatrix} \] ### Step 3: Identify the Pattern From the calculations, we can observe a pattern: - \( A^1 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} = 2^3 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 32 & 32 \\ 32 & 32 \end{pmatrix} = 2^5 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) ### Step 4: Generalize the Formula From the observed pattern, we can generalize: \[ A^n = 2^{2n-1} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] ### Final Answer Thus, the final result is: \[ A^n = 2^{2n-1} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \]

To find \( A^n \) for the matrix \( A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

Let A={(n,2n):ninN} and B={(2n,3n):ninN} . What is AnnB equal to ?

Let A={(n,2n):n epsilon N} and B={(2n,3n):n epsilon N}. What is A nnB equals to ?

If (cos x)/(cos y) = n , (sin x)/(sin y) = m , then what is (m^2 - n^2) sin^2 y equal to ?

""^(2n)P_(n) is equal to

If A + B + C = 180^(@) , then what is sin 2A - sin 2N - sin 2C equal to ?

Given that C(n, r) : C(n,r + 1) = 1 : 2 and C(n,r + 1) : C(n,r + 2) = 2 : 3 . What is n equal to ?

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Let A=[a(ij)](nxxn) be a square matrix and let c(ij) be cofactor of a...

    Text Solution

    |

  2. If omega is the cube root of unity, then what is one root of the equat...

    Text Solution

    |

  3. If A = [{:(2,2),(2,2):}], then what is A^(n) equal to ?

    Text Solution

    |

  4. If the least number of zeroes in a lower triangular matrix is 10, then...

    Text Solution

    |

  5. If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0...

    Text Solution

    |

  6. If AB=[{:(4,11),(4,5):}]and A=[{:(3,2),(1,2):}], then what is the valu...

    Text Solution

    |

  7. The determinant |{:(a+b+c,a+b,a),(4a+3b+2c,3a+2b,2a),(10a+6b+3c,6a+3b,...

    Text Solution

    |

  8. If X = [{:(1,-2),(0,3):}], and I is a 2 xx 2 identity matrix, then X^(...

    Text Solution

    |

  9. If the matrix B is the adjoint of the square matrix A and alpha is the...

    Text Solution

    |

  10. What is the determinant |{:(bc,a,a^(2)),(ca,b,b^(2)),(ab,c,c^(2)):}| e...

    Text Solution

    |

  11. If x^(2)+y^(2)+z^(2)=1, then what is the value of |{:(1,z,-y),(-z,1,x)...

    Text Solution

    |

  12. If |A(n xx n)|=3 and |"adj A"|=243, what is the value of n?

    Text Solution

    |

  13. Under what condition does A (BC) = (AB)C hold, where A, B, C are three...

    Text Solution

    |

  14. If A is matrix of order 3 xx 2 and B is matrix of order 2 xx 3, then w...

    Text Solution

    |

  15. If [{:(5,0),(0,7):}]^(-1)[{:(x),(-y):}]=[{:(-1),(2):}], then which on...

    Text Solution

    |

  16. Which one of the following statement is correct ? The system of linear...

    Text Solution

    |

  17. Suppose the system of equations a(1)x+b(1)y+c(1)z=d(1) a(2)x+b(2)y...

    Text Solution

    |

  18. If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0...

    Text Solution

    |

  19. If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |...

    Text Solution

    |

  20. If l + m + n = 0, then the system of equations -2x + y + z = l x -...

    Text Solution

    |