Home
Class 12
MATHS
If the inverse of [{:(1,p,q),(0,x,0),(0,...

If the inverse of `[{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0),(0,0,1):}]` then what is the value of x?

A

1

B

Zero

C

-1

D

`(1)/(p)+(1)/(q)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) given that the inverse of matrix \( A \) is provided, we will follow these steps: ### Step 1: Define the matrices Let matrix \( A \) be defined as: \[ A = \begin{pmatrix} 1 & p & q \\ 0 & x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] and its inverse \( A^{-1} \) is given by: \[ A^{-1} = \begin{pmatrix} 1 & -p & -q \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Set up the equation We know that the product of a matrix and its inverse equals the identity matrix: \[ A \cdot A^{-1} = I \] where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Multiply the matrices Now, we will multiply \( A \) and \( A^{-1} \): \[ A \cdot A^{-1} = \begin{pmatrix} 1 & p & q \\ 0 & x & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -p & -q \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \( 1 \cdot 1 + p \cdot 0 + q \cdot 0 = 1 \) - First row, second column: \( 1 \cdot (-p) + p \cdot 1 + q \cdot 0 = -p + p = 0 \) - First row, third column: \( 1 \cdot (-q) + p \cdot 0 + q \cdot 1 = -q + q = 0 \) - Second row, first column: \( 0 \cdot 1 + x \cdot 0 + 0 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot (-p) + x \cdot 1 + 0 \cdot 0 = x \) - Second row, third column: \( 0 \cdot (-q) + x \cdot 0 + 0 \cdot 1 = 0 \) - Third row, first column: \( 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 0 \) - Third row, second column: \( 0 \cdot (-p) + 0 \cdot 1 + 1 \cdot 0 = 0 \) - Third row, third column: \( 0 \cdot (-q) + 0 \cdot 0 + 1 \cdot 1 = 1 \) Thus, the product \( A \cdot A^{-1} \) results in: \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Set the resulting matrix equal to the identity matrix We equate this result to the identity matrix: \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Solve for \( x \) From the second row, second column, we have: \[ x = 1 \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{1} \]

To find the value of \( x \) given that the inverse of matrix \( A \) is provided, we will follow these steps: ### Step 1: Define the matrices Let matrix \( A \) be defined as: \[ A = \begin{pmatrix} 1 & p & q \\ 0 & x & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

The inverse of [(1,a,b),(0,x,0),(0,0,1)] is [(1,-a,-b),(0,1,0),(0,0,1)] |then x =

What is the inverse of [{:(0,0,1),(0,1,0),(1,0,0):}] ?

What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}] ?

the inverse of [[1,a, b],[0,x,0],[ 0, 0, 1]] i s[[1,-a,-b],[0 ,1 ,0],[ 0, 0, 1]] t h e n x=

Find the inverse of each of the matrices given below : Obtain the inverse of the matrics [(1,p,0),(0,1,p),(0,0,1)] and [(1,0,0),(q,1,0),(0,q,1)] . And, hence find the inverse of the matrix [((1+pq),p,0),(q,(1+pq),p),(0,q,1)] . Let the first two matrices be A and B. Then, the third matrix is AB. Now, (AB)^(-1)=(B^(-1)A^(-1))

P=[{:(1,1,1),(0,2,2),(0,0,3):}]Q=[{:(2,x,x),(0,4,0),(x,x,6):}] and R=PQP^(-1) then which are correct

If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)] then (PQ)^(-1) equals to

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to

The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If A = [{:(2,2),(2,2):}], then what is A^(n) equal to ?

    Text Solution

    |

  2. If the least number of zeroes in a lower triangular matrix is 10, then...

    Text Solution

    |

  3. If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0...

    Text Solution

    |

  4. If AB=[{:(4,11),(4,5):}]and A=[{:(3,2),(1,2):}], then what is the valu...

    Text Solution

    |

  5. The determinant |{:(a+b+c,a+b,a),(4a+3b+2c,3a+2b,2a),(10a+6b+3c,6a+3b,...

    Text Solution

    |

  6. If X = [{:(1,-2),(0,3):}], and I is a 2 xx 2 identity matrix, then X^(...

    Text Solution

    |

  7. If the matrix B is the adjoint of the square matrix A and alpha is the...

    Text Solution

    |

  8. What is the determinant |{:(bc,a,a^(2)),(ca,b,b^(2)),(ab,c,c^(2)):}| e...

    Text Solution

    |

  9. If x^(2)+y^(2)+z^(2)=1, then what is the value of |{:(1,z,-y),(-z,1,x)...

    Text Solution

    |

  10. If |A(n xx n)|=3 and |"adj A"|=243, what is the value of n?

    Text Solution

    |

  11. Under what condition does A (BC) = (AB)C hold, where A, B, C are three...

    Text Solution

    |

  12. If A is matrix of order 3 xx 2 and B is matrix of order 2 xx 3, then w...

    Text Solution

    |

  13. If [{:(5,0),(0,7):}]^(-1)[{:(x),(-y):}]=[{:(-1),(2):}], then which on...

    Text Solution

    |

  14. Which one of the following statement is correct ? The system of linear...

    Text Solution

    |

  15. Suppose the system of equations a(1)x+b(1)y+c(1)z=d(1) a(2)x+b(2)y...

    Text Solution

    |

  16. If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0...

    Text Solution

    |

  17. If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |...

    Text Solution

    |

  18. If l + m + n = 0, then the system of equations -2x + y + z = l x -...

    Text Solution

    |

  19. If (a(1)//x)+(b(1)//y)=c(1),(a(2)//x)+(b(2)//y)=c(2) Delta(1)=|{:(a(1)...

    Text Solution

    |

  20. Show that |{:("sin"10^(@), -"cos"10^(@)), ("sin"80^(@), "cos"80^(@)):}...

    Text Solution

    |