Home
Class 12
MATHS
If l + m + n = 0, then the system of equ...

If l + m + n = 0, then the system of equations
`-2x + y + z = l`
`x - 2y + z = m`
`x + y - 2z = n`
has

A

a trivial solution

B

no solution

C

a unique solution

D

infinitely many solutions

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations, we will follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \(-2x + y + z = l\) 2. \(x - 2y + z = m\) 3. \(x + y - 2z = n\) We can express this system in matrix form as: \[ A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} l \\ m \\ n \end{pmatrix} \] where \(A\) is the coefficient matrix: \[ A = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \] and the vector of variables is: \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \] and the constant matrix is: \[ \begin{pmatrix} l \\ m \\ n \end{pmatrix} \] ### Step 2: Calculate the determinant of the coefficient matrix \(A\) To determine the nature of the solutions, we need to calculate the determinant of matrix \(A\): \[ \text{det}(A) = -2 \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = (-2)(-2) - (1)(1) = 4 - 1 = 3 \] \[ \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = (1)(-2) - (1)(1) = -2 - 1 = -3 \] \[ \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-2)(1) = 1 + 2 = 3 \] Now substituting back: \[ \text{det}(A) = -2(3) - 1(-3) + 1(3) = -6 + 3 + 3 = 0 \] ### Step 3: Analyze the determinant Since \(\text{det}(A) = 0\), the system of equations is either inconsistent or has infinitely many solutions. ### Step 4: Check for infinite solutions To determine whether there are infinite solutions, we need to check the condition of the equations. We will find the adjoint of matrix \(A\) and check if \( \text{adj}(A) \cdot \begin{pmatrix} l \\ m \\ n \end{pmatrix} = 0 \). ### Step 5: Calculate the adjoint of matrix \(A\) The adjoint of a matrix is the transpose of the cofactor matrix. We compute the cofactors: - For \(a_{11}\): \(\text{Cofactor} = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 3\) - For \(a_{12}\): \(\text{Cofactor} = -\begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = 3\) - For \(a_{13}\): \(\text{Cofactor} = \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = 3\) - For \(a_{21}\): \(\text{Cofactor} = -\begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = -3\) - For \(a_{22}\): \(\text{Cofactor} = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 3\) - For \(a_{23}\): \(\text{Cofactor} = -\begin{vmatrix} -2 & 1 \\ 1 & 1 \end{vmatrix} = 1\) - For \(a_{31}\): \(\text{Cofactor} = \begin{vmatrix} 1 & -2 \\ -2 & 1 \end{vmatrix} = 3\) - For \(a_{32}\): \(\text{Cofactor} = -\begin{vmatrix} -2 & 1 \\ 1 & 1 \end{vmatrix} = -1\) - For \(a_{33}\): \(\text{Cofactor} = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 3\) Thus, the adjoint matrix is: \[ \text{adj}(A) = \begin{pmatrix} 3 & 3 & 3 \\ -3 & 3 & -1 \\ 3 & -1 & 3 \end{pmatrix} \] ### Step 6: Multiply adjoint \(A\) with the constant matrix Now we compute: \[ \text{adj}(A) \cdot \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ -3 & 3 & -1 \\ 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} \] This results in: \[ \begin{pmatrix} 3l + 3m + 3n \\ -3l + 3m - n \\ 3l - m + 3n \end{pmatrix} \] Given that \(l + m + n = 0\), we can substitute: \[ 3(l + m + n) = 3 \cdot 0 = 0 \] Thus, the first component is 0. ### Conclusion Since \(\text{adj}(A) \cdot \begin{pmatrix} l \\ m \\ n \end{pmatrix} = 0\), we conclude that the system has infinitely many solutions. ### Final Answer The system of equations has infinitely many solutions.

To solve the given system of equations, we will follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \(-2x + y + z = l\) 2. \(x - 2y + z = m\) 3. \(x + y - 2z = n\) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

The system of linear equations lambda x + y + z = 3 x - y - 2z = 6 -x + y + z = mu has

The system of equations -2x+y+z=a x-2y+z=b x+y-2z=c has

The value of x, y, z for the following system of equations x + y + z = 6, x - y + 2z = 5, 2x + y - z = 1 are

If x =a, y=b, z=c is a solution of the system of linear equations x + 8y + 7z =0, 9 x + 2y + 3z =0, x + y+z=0 such that point (a,b,c ) lies on the plane x + 2y + z=6, then 2a+ b+c equals

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0...

    Text Solution

    |

  2. If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |...

    Text Solution

    |

  3. If l + m + n = 0, then the system of equations -2x + y + z = l x -...

    Text Solution

    |

  4. If (a(1)//x)+(b(1)//y)=c(1),(a(2)//x)+(b(2)//y)=c(2) Delta(1)=|{:(a(1)...

    Text Solution

    |

  5. Show that |{:("sin"10^(@), -"cos"10^(@)), ("sin"80^(@), "cos"80^(@)):}...

    Text Solution

    |

  6. If |{:(2,4,0),(0,5,16),(0,0,1+p):}|=20, then what is the value of p?

    Text Solution

    |

  7. If the square matrices A and B are such that AB = A and BA = B, then

    Text Solution

    |

  8. If [{:(1,3),(0,1):}]A=[{:(1,-1),(0,1):}], then what is the matrix A ?

    Text Solution

    |

  9. Under which one of the following condition does the system of equation...

    Text Solution

    |

  10. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  11. Consider a matrix M=[{:(3,4,0),(2,1,0),(3,1,k):}] and the following st...

    Text Solution

    |

  12. If |{:(y,x,y+z),(z,y,x+y),(x,z,z+x):}|=0, then which one of the follow...

    Text Solution

    |

  13. What is the value of k, if |{:(k,b+c,b^(2)+c^(2)),(k,c+a,c^(2)+a^(2)),...

    Text Solution

    |

  14. Let A=[(0,0,-10),(0,-1,0),(-1,0,0)] Then only correct statement about ...

    Text Solution

    |

  15. If A=[{:(3,2),(1,4):}], then what is A (adj A) equal to ?

    Text Solution

    |

  16. What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?

    Text Solution

    |

  17. Consider the following statements in respect of symmetric matrices A a...

    Text Solution

    |

  18. The following item consists of two statements, one labelled the Assert...

    Text Solution

    |

  19. If X and Y are the matrices of order 2 xx 2 each and 2X-3Y=[{:(-7,0),(...

    Text Solution

    |

  20. If a ,b and c are all non-zero and |1+a1 1 1a+b1 1 1a+c|=0, then pr...

    Text Solution

    |