Home
Class 12
MATHS
If (a(1)//x)+(b(1)//y)=c(1),(a(2)//x)+(b...

If `(a_(1)//x)+(b_(1)//y)=c_(1),(a_(2)//x)+(b_(2)//y)=c_(2) Delta_(1)=|{:(a_(1),b_(1)),(a_(2),b_(2)):}|,Delta_(2)=|{:(b_(1),c_(1)),(b_(2),c_(2)):}|," "Delta_(3)=|{:(c_(1),a_(1)),(c_(2),a_(2)):}|`, then (x, y) is equal to which one of the following ?

A

`(Delta_(2)//Delta_(1),Delta_(3)//Delta_(1))`

B

`(Delta_(3)//Delta_(1),Delta_(2)//Delta_(1))`

C

`(-Delta_(1)//Delta_(2),-Delta_(1)//Delta_(3))`

D

`(-Delta_(1)//Delta_(2),-Delta_(1)//Delta_(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the values of \( x \) and \( y \) based on the equations provided. The equations are: \[ \frac{a_1}{x} + \frac{b_1}{y} = c_1 \] \[ \frac{a_2}{x} + \frac{b_2}{y} = c_2 \] We can rewrite these equations in terms of new variables \( u \) and \( v \): Let: \[ u = \frac{1}{x} \quad \text{and} \quad v = \frac{1}{y} \] Then the equations become: \[ a_1 u + b_1 v = c_1 \tag{1} \] \[ a_2 u + b_2 v = c_2 \tag{2} \] ### Step 1: Set up the determinant equations We can express these equations in matrix form and use determinants to solve for \( u \) and \( v \). The determinant for \( u \) can be expressed as: \[ \Delta_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \] The determinant for \( v \) can be expressed as: \[ \Delta_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} = b_1 c_2 - b_2 c_1 \] ### Step 2: Solve for \( u \) and \( v \) Using Cramer's rule, we can find \( u \) and \( v \): For \( u \): \[ u = \frac{\Delta_1}{\Delta_2} = \frac{c_1 b_2 - c_2 b_1}{b_1 c_2 - b_2 c_1} \] For \( v \): \[ v = \frac{\Delta_3}{\Delta_1} = \frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1} \] ### Step 3: Substitute back to find \( x \) and \( y \) Now, since \( u = \frac{1}{x} \) and \( v = \frac{1}{y} \), we can find \( x \) and \( y \): \[ \frac{1}{x} = u \implies x = \frac{1}{u} \] \[ \frac{1}{y} = v \implies y = \frac{1}{v} \] Thus: \[ x = \frac{\Delta_2}{\Delta_1} \quad \text{and} \quad y = \frac{\Delta_1}{\Delta_3} \] ### Step 4: Final values of \( x \) and \( y \) From the determinants, we can express: \[ x = -\frac{\Delta_1}{\Delta_2} \quad \text{and} \quad y = -\frac{\Delta_1}{\Delta_3} \] ### Conclusion Thus, the final values of \( (x, y) \) are: \[ x = -\frac{\Delta_1}{\Delta_2}, \quad y = -\frac{\Delta_1}{\Delta_3} \]

To solve the given problem, we need to find the values of \( x \) and \( y \) based on the equations provided. The equations are: \[ \frac{a_1}{x} + \frac{b_1}{y} = c_1 \] \[ \frac{a_2}{x} + \frac{b_2}{y} = c_2 \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Show that |{:(ma_(1),b_(1),nc_(1)),(ma_(2),b_(2),nc_(2)),(ma_(3),b_(3),nc_(3)):}|=-mn|{:(c_(1),b_(1),a_(1)),(c_(2),b_(2),a_(2)),(c_(3),b_(3),a_(3)):}|

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of for which determinant |{:(2,3,-1),(-1,-2,k),(1,-4,1):}| vanishes, is

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of the determinant |{:(2,3,4),(6,5,7),(1,-3,2):}|is:

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

If x in R,a_(i),b_(i),c_(i) in R for i=1,2,3 and |{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0 , then which of the following may be true ?

If the system of equations a_(1)x+b_(1)y+c_(1),a_(2)x+b_(2)y+c_(2)=0 is inconsistent,(a_(1))/(a_(2))=(b_(1))/(b_(2))!=(c_(1))/(c_(2))

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |...

    Text Solution

    |

  2. If l + m + n = 0, then the system of equations -2x + y + z = l x -...

    Text Solution

    |

  3. If (a(1)//x)+(b(1)//y)=c(1),(a(2)//x)+(b(2)//y)=c(2) Delta(1)=|{:(a(1)...

    Text Solution

    |

  4. Show that |{:("sin"10^(@), -"cos"10^(@)), ("sin"80^(@), "cos"80^(@)):}...

    Text Solution

    |

  5. If |{:(2,4,0),(0,5,16),(0,0,1+p):}|=20, then what is the value of p?

    Text Solution

    |

  6. If the square matrices A and B are such that AB = A and BA = B, then

    Text Solution

    |

  7. If [{:(1,3),(0,1):}]A=[{:(1,-1),(0,1):}], then what is the matrix A ?

    Text Solution

    |

  8. Under which one of the following condition does the system of equation...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. Consider a matrix M=[{:(3,4,0),(2,1,0),(3,1,k):}] and the following st...

    Text Solution

    |

  11. If |{:(y,x,y+z),(z,y,x+y),(x,z,z+x):}|=0, then which one of the follow...

    Text Solution

    |

  12. What is the value of k, if |{:(k,b+c,b^(2)+c^(2)),(k,c+a,c^(2)+a^(2)),...

    Text Solution

    |

  13. Let A=[(0,0,-10),(0,-1,0),(-1,0,0)] Then only correct statement about ...

    Text Solution

    |

  14. If A=[{:(3,2),(1,4):}], then what is A (adj A) equal to ?

    Text Solution

    |

  15. What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?

    Text Solution

    |

  16. Consider the following statements in respect of symmetric matrices A a...

    Text Solution

    |

  17. The following item consists of two statements, one labelled the Assert...

    Text Solution

    |

  18. If X and Y are the matrices of order 2 xx 2 each and 2X-3Y=[{:(-7,0),(...

    Text Solution

    |

  19. If a ,b and c are all non-zero and |1+a1 1 1a+b1 1 1a+c|=0, then pr...

    Text Solution

    |

  20. If a matrix A is symmetric as well as anti-symmetric, then which one o...

    Text Solution

    |