Home
Class 12
MATHS
If |{:(y,x,y+z),(z,y,x+y),(x,z,z+x):}|=0...

If `|{:(y,x,y+z),(z,y,x+y),(x,z,z+x):}|=0`, then which one of the following is correct ?

A

Either x + y = z or x = y

B

Either x + y = - z or x = z

C

Either x + z = y or z = y

D

Either z + y = x or x = y

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the determinant of the given matrix and find the conditions under which it equals zero. The matrix is: \[ \begin{pmatrix} y & x & y + z \\ z & y & x + y \\ x & z & z + x \end{pmatrix} \] ### Step 1: Set Up the Determinant We start by writing the determinant of the matrix: \[ D = \begin{vmatrix} y & x & y + z \\ z & y & x + y \\ x & z & z + x \end{vmatrix} \] ### Step 2: Row Operation We perform the row operation \( R_1 \rightarrow R_1 + R_2 + R_3 \): \[ R_1 = (y + z + x, x + y + z, (y + z) + (x + y) + (z + x)) \] This simplifies to: \[ R_1 = (x + y + z, x + y + z, 2x + 2y + 2z) \] The new matrix becomes: \[ \begin{pmatrix} x + y + z & x + y + z & 2(x + y + z) \\ z & y & x + y \\ x & z & z + x \end{pmatrix} \] ### Step 3: Factor Out Common Terms Now we can factor out \( (x + y + z) \) from the first row: \[ D = (x + y + z) \begin{vmatrix} 1 & 1 & 2 \\ z & y & x + y \\ x & z & z + x \end{vmatrix} \] ### Step 4: Column Operations Next, we perform column operations to simplify the determinant further. We can do \( C_2 \rightarrow C_2 - C_1 \) and \( C_3 \rightarrow C_3 - 2C_1 \): This gives us: \[ \begin{pmatrix} 1 & 0 & 0 \\ z & y - z & y \\ x & z - x & z + x - 2x \end{pmatrix} \] ### Step 5: Simplifying the Determinant Now we can compute the determinant of the simplified matrix: \[ D = (x + y + z) \begin{vmatrix} 1 & 0 & 0 \\ z & y - z & y \\ x & z - x & -x + z \end{vmatrix} \] ### Step 6: Calculate the Determinant Calculating the determinant using the first row: \[ D = (x + y + z) \left( 1 \cdot \begin{vmatrix} y - z & y \\ z - x & -x + z \end{vmatrix} \right) \] Calculating the 2x2 determinant: \[ = (y - z)(-x + z) - y(z - x) = -y + yz + zx - z^2 - yz + yx \] ### Step 7: Setting the Determinant to Zero Setting the determinant equal to zero gives us: \[ (x + y + z) \cdot \text{(some expression)} = 0 \] This implies either: 1. \( x + y + z = 0 \) 2. The other expression must also equal zero. ### Conclusion From the operations and simplifications, we find that the conditions lead us to conclude that: - \( x + y + z = 0 \) - \( z = x \) Thus, the correct option is: **Option B: \( z = x \) and \( x + y + z = 0 \)**.

To solve the problem, we need to analyze the determinant of the given matrix and find the conditions under which it equals zero. The matrix is: \[ \begin{pmatrix} y & x & y + z \\ z & y & x + y \\ x & z & z + x \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If x/(y+z) = y/(z+x) = z/(x+y) then which one of the following is correct ?

If x^(ln)[(y)/(z)].y^(ln[xz]^(2)),z^(ln[(x)/(y)])=y^(4ln y) for any x>1,y>1 and z>1, then which one of the following is correct?

Given that log_(x)y,log_(z)x,log_(y)z are in GP, xyz=64" and "x^(3),y^(3),z^(3) are in A.P. Which one of the following is correct ? x,y and z are

if (x+y)/(x+y+z)=(y+z)/(x+y+z)=(x+z)/(x+y+z)=p , then which of the following can be the value of p?

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  2. Consider a matrix M=[{:(3,4,0),(2,1,0),(3,1,k):}] and the following st...

    Text Solution

    |

  3. If |{:(y,x,y+z),(z,y,x+y),(x,z,z+x):}|=0, then which one of the follow...

    Text Solution

    |

  4. What is the value of k, if |{:(k,b+c,b^(2)+c^(2)),(k,c+a,c^(2)+a^(2)),...

    Text Solution

    |

  5. Let A=[(0,0,-10),(0,-1,0),(-1,0,0)] Then only correct statement about ...

    Text Solution

    |

  6. If A=[{:(3,2),(1,4):}], then what is A (adj A) equal to ?

    Text Solution

    |

  7. What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?

    Text Solution

    |

  8. Consider the following statements in respect of symmetric matrices A a...

    Text Solution

    |

  9. The following item consists of two statements, one labelled the Assert...

    Text Solution

    |

  10. If X and Y are the matrices of order 2 xx 2 each and 2X-3Y=[{:(-7,0),(...

    Text Solution

    |

  11. If a ,b and c are all non-zero and |1+a1 1 1a+b1 1 1a+c|=0, then pr...

    Text Solution

    |

  12. If a matrix A is symmetric as well as anti-symmetric, then which one o...

    Text Solution

    |

  13. If A=[{:(1,-2,-3),(2,1,-2),(3,2,1):}], then which one of the following...

    Text Solution

    |

  14. A=|{:(2a,3r,x),(4b,6s,2y),(-2c,-3t,-z):}|=lambda|{:(a,r,x),(b,s,y),(c,...

    Text Solution

    |

  15. What is the value of |{:(" "1-i," "omega^(2)," "-omega),(" "omega^(2)...

    Text Solution

    |

  16. If A=[{:(omega,0),(0,omega):}], where omega is cube root of unity, the...

    Text Solution

    |

  17. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |

  18. If |{:(a,b,c),(l,m,n),(p,q,r):}|=2, then what is the value of the dete...

    Text Solution

    |

  19. Let A = [{:(5,6,1),(2,-1,5):}]. Let there exist a matrix B such that A...

    Text Solution

    |

  20. Consider the following statements 1. If A' = A, then A is a singular...

    Text Solution

    |