Home
Class 12
MATHS
If A=[{:(omega,0),(0,omega):}], where om...

If `A=[{:(omega,0),(0,omega):}]`, where `omega` is cube root of unity, then what is `A^(100)` equal to ?

A

A

B

`-A`

C

Null matrix

D

Identity matrix

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^{100} \) where \( A = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} \) and \( \omega \) is a cube root of unity. ### Step-by-step Solution: 1. **Understanding the Matrix A**: The matrix \( A \) is given as: \[ A = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} \] Here, \( \omega \) is a cube root of unity, which means \( \omega^3 = 1 \). **Hint**: Recall the properties of cube roots of unity: \( 1, \omega, \omega^2 \) where \( \omega^3 = 1 \). 2. **Finding \( A^2 \)**: We calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} \cdot \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} = \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega^2 \end{pmatrix} \] **Hint**: When multiplying diagonal matrices, the result is another diagonal matrix with the squares of the original diagonal elements. 3. **Finding \( A^3 \)**: Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega^2 \end{pmatrix} \cdot \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} = \begin{pmatrix} \omega^3 & 0 \\ 0 & \omega^3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] **Hint**: Remember that \( \omega^3 = 1 \) simplifies the calculation. 4. **Finding Higher Powers of A**: Since \( A^3 = I \) (the identity matrix), we can find \( A^{100} \) by reducing the exponent modulo 3: \[ 100 \mod 3 = 1 \] Therefore, \( A^{100} = A^{1} = A \). **Hint**: Use modular arithmetic to simplify the exponent when dealing with periodic powers. 5. **Final Result**: Thus, we conclude that: \[ A^{100} = A = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} \] ### Summary: The final answer is: \[ A^{100} = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} \]

To solve the problem, we need to find \( A^{100} \) where \( A = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} \) and \( \omega \) is a cube root of unity. ### Step-by-step Solution: 1. **Understanding the Matrix A**: The matrix \( A \) is given as: \[ A = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then what is omega^(10)+omega^(-10) equal to ?

If omega is the imaginary cube root of unity, then what is (2-omega+2omega^(2))^(27) equal to ?

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If w be imaginary cube root of unity then (1+w-w^(2))^(7) equals:

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. A=|{:(2a,3r,x),(4b,6s,2y),(-2c,-3t,-z):}|=lambda|{:(a,r,x),(b,s,y),(c,...

    Text Solution

    |

  2. What is the value of |{:(" "1-i," "omega^(2)," "-omega),(" "omega^(2)...

    Text Solution

    |

  3. If A=[{:(omega,0),(0,omega):}], where omega is cube root of unity, the...

    Text Solution

    |

  4. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |

  5. If |{:(a,b,c),(l,m,n),(p,q,r):}|=2, then what is the value of the dete...

    Text Solution

    |

  6. Let A = [{:(5,6,1),(2,-1,5):}]. Let there exist a matrix B such that A...

    Text Solution

    |

  7. Consider the following statements 1. If A' = A, then A is a singular...

    Text Solution

    |

  8. If the system of equations 2x + 3y = 7 and 2ax + (a + b) y = 28 has in...

    Text Solution

    |

  9. If the lines 3y+4x=1, y=x+5 and 5y+bx=3 are concurrent then b=

    Text Solution

    |

  10. What is the value of |{:(cos 15^(@),sin 15^(@)),(cos 45^(@),sin 45^(@)...

    Text Solution

    |

  11. Let A be an n xx n matrix. If det (lambda A) = lambda^(s) det(A), what...

    Text Solution

    |

  12. If A be a real skew-symmetric matrix of order n such that A^(2)+I=0, I...

    Text Solution

    |

  13. Let A = [{:(1,2),(3,4):}]=[a(ij)], where i, j = 1, 2, If its inverse m...

    Text Solution

    |

  14. If [{:(1,-3,2),(2,-8,5),(4,2,lambda):}] is not an invertible matrix, t...

    Text Solution

    |

  15. If A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):}],C=[{:(0,-i),(-i,0):}], then...

    Text Solution

    |

  16. If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|, then what is x - iy equ...

    Text Solution

    |

  17. If |A| = 8, where A is square matrix of order 3, then what is |adj A| ...

    Text Solution

    |

  18. Consider the following statements in respect of a square matrix A and ...

    Text Solution

    |

  19. If a matrix A is such that 3A^3 +2A^2+5A+I= 0, then A^(-1) is equal to

    Text Solution

    |

  20. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |