Home
Class 12
MATHS
Let A = [{:(5,6,1),(2,-1,5):}]. Let ther...

Let `A = [{:(5,6,1),(2,-1,5):}]`. Let there exist a matrix B such that `AB = [{:(35,49),(29,13):}]`. What is B equal to ?

A

`[{:(5,1,4),(2,6,3):}]`

B

`[{:(2,6,3),(5,1,4):}]`

C

`[{:(5,2),(1,6),(4,3):}]`

D

`[{:(2,5),(6,1),(3,4):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( B \) such that \( AB = \begin{pmatrix} 35 & 49 \\ 29 & 13 \end{pmatrix} \), we will follow these steps: ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 5 & 6 & 1 \\ 2 & -1 & 5 \end{pmatrix} \] Let \( B \) be represented as: \[ B = \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \] where \( a, b, c, d, e, f \) are the unknowns we need to determine. ### Step 2: Determine the dimensions of \( B \) Since \( A \) is a \( 2 \times 3 \) matrix and the resulting matrix \( AB \) is a \( 2 \times 2 \) matrix, \( B \) must be a \( 3 \times 2 \) matrix. ### Step 3: Perform matrix multiplication The multiplication \( AB \) is calculated as follows: \[ AB = \begin{pmatrix} 5 & 6 & 1 \\ 2 & -1 & 5 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \] Calculating the elements of the resulting matrix: 1. First row, first column: \[ 5a + 6c + 1e \] 2. First row, second column: \[ 5b + 6d + 1f \] 3. Second row, first column: \[ 2a - 1c + 5e \] 4. Second row, second column: \[ 2b - 1d + 5f \] Thus, we have: \[ AB = \begin{pmatrix} 5a + 6c + e & 5b + 6d + f \\ 2a - c + 5e & 2b - d + 5f \end{pmatrix} \] ### Step 4: Set up equations We know that: \[ AB = \begin{pmatrix} 35 & 49 \\ 29 & 13 \end{pmatrix} \] This gives us the following equations: 1. \( 5a + 6c + e = 35 \) (Equation 1) 2. \( 5b + 6d + f = 49 \) (Equation 2) 3. \( 2a - c + 5e = 29 \) (Equation 3) 4. \( 2b - d + 5f = 13 \) (Equation 4) ### Step 5: Solve the equations We will solve these equations step by step. **From Equation 1:** \[ e = 35 - 5a - 6c \] **Substituting \( e \) into Equation 3:** \[ 2a - c + 5(35 - 5a - 6c) = 29 \] Expanding and simplifying: \[ 2a - c + 175 - 25a - 30c = 29 \] \[ -23a - 31c + 175 = 29 \] \[ -23a - 31c = -146 \quad \text{(Equation 5)} \] **From Equation 2:** \[ f = 49 - 5b - 6d \] **Substituting \( f \) into Equation 4:** \[ 2b - d + 5(49 - 5b - 6d) = 13 \] Expanding and simplifying: \[ 2b - d + 245 - 25b - 30d = 13 \] \[ -23b - 31d + 245 = 13 \] \[ -23b - 31d = -232 \quad \text{(Equation 6)} \] ### Step 6: Solve Equations 5 and 6 We can solve Equations 5 and 6 simultaneously. **From Equation 5:** \[ 23a + 31c = 146 \] **From Equation 6:** \[ 23b + 31d = 232 \] Now, we can choose values for \( a, b, c, d \) that satisfy these equations. After testing some integer values, we find: - \( a = 5 \) - \( b = 2 \) - \( c = 1 \) - \( d = 6 \) - \( e = 4 \) - \( f = 3 \) ### Step 7: Write the final matrix \( B \) Thus, the matrix \( B \) is: \[ B = \begin{pmatrix} 5 & 2 \\ 1 & 6 \\ 4 & 3 \end{pmatrix} \]

To find the matrix \( B \) such that \( AB = \begin{pmatrix} 35 & 49 \\ 29 & 13 \end{pmatrix} \), we will follow these steps: ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 5 & 6 & 1 \\ 2 & -1 & 5 \end{pmatrix} \] Let \( B \) be represented as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

Let A [{:(5,6,1),(2,-1,5):}] , if there exists a matrix B such that AB =[{:(35,49),(29,13):}] , then what is B equal to ?

If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = [{:(2,3),(5,-1):}] , then AB is equal to

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

Find a 2xx2 matrix B such that [[5,4],[1,1]] B=[[1,-2],[1,3]]

If A = [(3,1),(5,2)] , and AB = BA = I, then find the matrix B.

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

Let A=([1,23,4]) and B=([a,00,b]),a,b in N) Then,(a) there cannot exist any B such that AB=BA

If A= [{:(,-2),(,4),(,5):}] , B=(1,3-6) verify that (AB)'=B'A'

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |

  2. If |{:(a,b,c),(l,m,n),(p,q,r):}|=2, then what is the value of the dete...

    Text Solution

    |

  3. Let A = [{:(5,6,1),(2,-1,5):}]. Let there exist a matrix B such that A...

    Text Solution

    |

  4. Consider the following statements 1. If A' = A, then A is a singular...

    Text Solution

    |

  5. If the system of equations 2x + 3y = 7 and 2ax + (a + b) y = 28 has in...

    Text Solution

    |

  6. If the lines 3y+4x=1, y=x+5 and 5y+bx=3 are concurrent then b=

    Text Solution

    |

  7. What is the value of |{:(cos 15^(@),sin 15^(@)),(cos 45^(@),sin 45^(@)...

    Text Solution

    |

  8. Let A be an n xx n matrix. If det (lambda A) = lambda^(s) det(A), what...

    Text Solution

    |

  9. If A be a real skew-symmetric matrix of order n such that A^(2)+I=0, I...

    Text Solution

    |

  10. Let A = [{:(1,2),(3,4):}]=[a(ij)], where i, j = 1, 2, If its inverse m...

    Text Solution

    |

  11. If [{:(1,-3,2),(2,-8,5),(4,2,lambda):}] is not an invertible matrix, t...

    Text Solution

    |

  12. If A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):}],C=[{:(0,-i),(-i,0):}], then...

    Text Solution

    |

  13. If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|, then what is x - iy equ...

    Text Solution

    |

  14. If |A| = 8, where A is square matrix of order 3, then what is |adj A| ...

    Text Solution

    |

  15. Consider the following statements in respect of a square matrix A and ...

    Text Solution

    |

  16. If a matrix A is such that 3A^3 +2A^2+5A+I= 0, then A^(-1) is equal to

    Text Solution

    |

  17. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  18. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  19. What is the value of |{:(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3))...

    Text Solution

    |

  20. If the matrix A=[{:(2-x," "1,1),(" "1,3-x,0),(-1,-3,-x):}] is singular...

    Text Solution

    |