Home
Class 12
MATHS
Let A = [{:(1,2),(3,4):}]=[a(ij)], where...

Let `A = [{:(1,2),(3,4):}]=[a_(ij)]`, where i, j = 1, 2, If its inverse matrix is `[b_(ij)]`, what is `b_(22)` ?

A

-2

B

1

C

`(3)/(2)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the element \( b_{22} \) of the inverse matrix \( B \) of the matrix \( A \), we can follow these steps: ### Step 1: Define the Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A \) The determinant \( \text{det}(A) \) of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \] ### Step 3: Find the Adjoint of \( A \) The adjoint of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} \] ### Step 4: Calculate the Inverse of \( A \) The inverse of a matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{-2} & \frac{-2}{-2} \\ \frac{-3}{-2} & \frac{1}{-2} \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 5: Identify \( b_{22} \) The element \( b_{22} \) corresponds to the element in the second row and second column of the inverse matrix \( A^{-1} \): \[ b_{22} = -\frac{1}{2} \] ### Final Answer Thus, the value of \( b_{22} \) is: \[ \boxed{-\frac{1}{2}} \]

To find the element \( b_{22} \) of the inverse matrix \( B \) of the matrix \( A \), we can follow these steps: ### Step 1: Define the Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,2),(3,4)] , [a_(ij)] where I,j =1,2. If its inverse matrix is [b_(q)] , then what is b_(22) equal to ?

Let A=[a_(ij)] and B=[b_(ij)] be two 3xx3 real matrices such that b_(ij)=(3)(i+j-2)a_(ji) , where i, j = 1,2,3. If the determinant of B is 81, then the determinant of A is :

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

If a_(ij)=|2i + 3j^(2)|, then matrix A_(2xx2) = [a_(ij)] will be:

Let A = (a_(ij))_(1 le I, j le 3) be a 3 xx 3 invertible matrix where each a_(ij) is a real number. Denote the inverse of the matrix A by A^(-1) . If Sigma_(j=1)^(3) a_(ij) = 1 for 1 le i le 3 , then

Let A=[a_(ij)] be a square matrix of order n such that {:a_(ij)={(0," if i ne j),(i,if i=j):} Statement -2 : The inverse of A is the matrix B=[b_(ij)] such that {:b_(ij)={(0," if i ne j),(1/i,if i=j):} Statement -2 : The inverse of a diagonal matrix is a scalar matrix.

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Let A be an n xx n matrix. If det (lambda A) = lambda^(s) det(A), what...

    Text Solution

    |

  2. If A be a real skew-symmetric matrix of order n such that A^(2)+I=0, I...

    Text Solution

    |

  3. Let A = [{:(1,2),(3,4):}]=[a(ij)], where i, j = 1, 2, If its inverse m...

    Text Solution

    |

  4. If [{:(1,-3,2),(2,-8,5),(4,2,lambda):}] is not an invertible matrix, t...

    Text Solution

    |

  5. If A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):}],C=[{:(0,-i),(-i,0):}], then...

    Text Solution

    |

  6. If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|, then what is x - iy equ...

    Text Solution

    |

  7. If |A| = 8, where A is square matrix of order 3, then what is |adj A| ...

    Text Solution

    |

  8. Consider the following statements in respect of a square matrix A and ...

    Text Solution

    |

  9. If a matrix A is such that 3A^3 +2A^2+5A+I= 0, then A^(-1) is equal to

    Text Solution

    |

  10. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  11. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  12. What is the value of |{:(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3))...

    Text Solution

    |

  13. If the matrix A=[{:(2-x," "1,1),(" "1,3-x,0),(-1,-3,-x):}] is singular...

    Text Solution

    |

  14. Consider the following statements. I. The inverse of a square matrix...

    Text Solution

    |

  15. What is the value of the determinant |{:(x+1,x+2,x+4),(x+3,x+5,x+8),(x...

    Text Solution

    |

  16. If 5 and 7 are the roots of the equation |{:(x,4,5),(7,x,7),(5,8,x):}|...

    Text Solution

    |

  17. Find the value of k in which the system of equations kx + 2y = 5 and 3...

    Text Solution

    |

  18. If the matrix A=[{:(alpha, beta),(beta,alpha):}] is such that A^(2)=I,...

    Text Solution

    |

  19. If A=[{:(alpha,0),(1,1):}]and B=[{:(1,0),(2,1):}] such that A^(2)=B, t...

    Text Solution

    |

  20. A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}], then which of the follow...

    Text Solution

    |