Home
Class 12
MATHS
If [{:(1,-3,2),(2,-8,5),(4,2,lambda):}] ...

If `[{:(1,-3,2),(2,-8,5),(4,2,lambda):}]` is not an invertible matrix, then what is the value of `lambda` ?

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the matrix \[ A = \begin{pmatrix} 1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda \end{pmatrix} \] is not invertible, we need to set the determinant of the matrix \( A \) to zero. A matrix is not invertible (or singular) if its determinant is zero. ### Step 1: Calculate the Determinant The determinant of a \( 3 \times 3 \) matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = -3, c = 2 \) - \( d = 2, e = -8, f = 5 \) - \( g = 4, h = 2, i = \lambda \) Substituting these values into the determinant formula, we have: \[ \text{det}(A) = 1((-8)\lambda - (5)(2)) - (-3)((2)(\lambda) - (5)(4)) + 2((2)(2) - (-8)(4)) \] ### Step 2: Simplify Each Term Now, we simplify each term: 1. **First term**: \[ 1((-8)\lambda - 10) = -8\lambda - 10 \] 2. **Second term**: \[ -(-3)((2\lambda) - 20) = 3(2\lambda - 20) = 6\lambda - 60 \] 3. **Third term**: \[ 2((2)(2) - (-8)(4)) = 2(4 + 32) = 2(36) = 72 \] ### Step 3: Combine All Terms Now, we combine all the terms we calculated: \[ -8\lambda - 10 + 6\lambda - 60 + 72 = 0 \] Combining like terms gives: \[ (-8\lambda + 6\lambda) + (-10 - 60 + 72) = 0 \] This simplifies to: \[ -2\lambda + 2 = 0 \] ### Step 4: Solve for \( \lambda \) Now, we solve for \( \lambda \): \[ -2\lambda + 2 = 0 \implies -2\lambda = -2 \implies \lambda = 1 \] Thus, the value of \( \lambda \) for which the matrix is not invertible is \[ \boxed{1} \]

To find the value of \( \lambda \) such that the matrix \[ A = \begin{pmatrix} 1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda \end{pmatrix} \] is not invertible, we need to set the determinant of the matrix \( A \) to zero. A matrix is not invertible (or singular) if its determinant is zero. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If [{:(1,-3,2),(2,-8,5),(4,2, lamda):}] is not an invertible matrix, then what is the value of lamda

If A=[(1,lambda,2),(1,2,5),(2,1,1)] is not invertible then lambda =?

If A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}] and X is a non zero column matrix such that AX=lambdaX , where lambda is a scalar, then values of lambda can be

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

If the points A(-1,3,2),B(-4,2,-2) and C(5,5,lambda) are collinear,find the value of lambda

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

If ({:(2,3),(4,1):})xx({:(5,-2),(-3,1):})=({:(1,-1),(17,lambda):}) , then what is lambda equal to ?

If the points A(2,3,-4), B(1,-2,3) and C (3,lambda,-1) are colliner, then value of lambda is

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If A be a real skew-symmetric matrix of order n such that A^(2)+I=0, I...

    Text Solution

    |

  2. Let A = [{:(1,2),(3,4):}]=[a(ij)], where i, j = 1, 2, If its inverse m...

    Text Solution

    |

  3. If [{:(1,-3,2),(2,-8,5),(4,2,lambda):}] is not an invertible matrix, t...

    Text Solution

    |

  4. If A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):}],C=[{:(0,-i),(-i,0):}], then...

    Text Solution

    |

  5. If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|, then what is x - iy equ...

    Text Solution

    |

  6. If |A| = 8, where A is square matrix of order 3, then what is |adj A| ...

    Text Solution

    |

  7. Consider the following statements in respect of a square matrix A and ...

    Text Solution

    |

  8. If a matrix A is such that 3A^3 +2A^2+5A+I= 0, then A^(-1) is equal to

    Text Solution

    |

  9. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  10. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  11. What is the value of |{:(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3))...

    Text Solution

    |

  12. If the matrix A=[{:(2-x," "1,1),(" "1,3-x,0),(-1,-3,-x):}] is singular...

    Text Solution

    |

  13. Consider the following statements. I. The inverse of a square matrix...

    Text Solution

    |

  14. What is the value of the determinant |{:(x+1,x+2,x+4),(x+3,x+5,x+8),(x...

    Text Solution

    |

  15. If 5 and 7 are the roots of the equation |{:(x,4,5),(7,x,7),(5,8,x):}|...

    Text Solution

    |

  16. Find the value of k in which the system of equations kx + 2y = 5 and 3...

    Text Solution

    |

  17. If the matrix A=[{:(alpha, beta),(beta,alpha):}] is such that A^(2)=I,...

    Text Solution

    |

  18. If A=[{:(alpha,0),(1,1):}]and B=[{:(1,0),(2,1):}] such that A^(2)=B, t...

    Text Solution

    |

  19. A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}], then which of the follow...

    Text Solution

    |

  20. The simultaneous equations 3x + 5y = 7 and 6x + 10y = 18 have

    Text Solution

    |