Home
Class 12
MATHS
If A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):...

If `A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):}],C=[{:(0,-i),(-i,0):}]`, then which one of the following in not correct ?

A

`A^(2)=B^(2)`

B

`B^(2)=C^(2)`

C

AB = C

D

AB = BA

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrices \( A \), \( B \), and \( C \) given in the question and check the correctness of the statements related to these matrices. Given: \[ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we perform the multiplication \( A \times A \): \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot 0 + 1 \cdot (-1) = -1 \) - First row, second column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, first column: \( -1 \cdot 0 + 0 \cdot (-1) = 0 \) - Second row, second column: \( -1 \cdot 1 + 0 \cdot 0 = -1 \) Thus, we have: \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I \] ### Step 2: Calculate \( B^2 \) Now, we calculate \( B^2 \): \[ B^2 = B \cdot B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \cdot \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \] Calculating the elements: - First row, first column: \( i \cdot i + 0 \cdot 0 = i^2 = -1 \) - First row, second column: \( i \cdot 0 + 0 \cdot (-i) = 0 \) - Second row, first column: \( 0 \cdot i + (-i) \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + (-i) \cdot (-i) = (-i)^2 = -1 \) Thus, we have: \[ B^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I \] ### Step 3: Calculate \( C^2 \) Next, we calculate \( C^2 \): \[ C^2 = C \cdot C = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot 0 + (-i)(-i) = i^2 = -1 \) - First row, second column: \( 0 \cdot (-i) + (-i) \cdot 0 = 0 \) - Second row, first column: \( (-i) \cdot 0 + 0 \cdot (-i) = 0 \) - Second row, second column: \( (-i)(-i) + 0 \cdot 0 = (-i)^2 = -1 \) Thus, we have: \[ C^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I \] ### Conclusion Now we can summarize the results: - \( A^2 = -I \) - \( B^2 = -I \) - \( C^2 = -I \) Since all the squares of the matrices \( A \), \( B \), and \( C \) yield the same result, we can conclude that none of the statements regarding \( A^2 \), \( B^2 \), or \( C^2 \) being different from \( -I \) is correct. ### Final Answer Thus, the statement that is not correct is the one that claims any of the matrices' squares is different from \( -I \).

To solve the problem, we need to analyze the matrices \( A \), \( B \), and \( C \) given in the question and check the correctness of the statements related to these matrices. Given: \[ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,1),(-1,0):}] B=[{:(i,0),(0,-i):}] C=[{:(0,-i),(-i,0):}] then which one of the following is not correct ?

If A =({:(i,0),(0,-i):}),B=({:(0,-1),(1,0):}),C=({:(0,i),(i,0):}) wher i = sqrt(-1) , then which one of the following is correct ?

If A[{:(i,0),(0,-i)]B=[{:(0,-1),(1,0)] and C =[{:(0,i),(i,0):}] where i= sqrt(-1) . Then which one of the following is correct ?

If A = [{:(i, 0),(0,i):}] and B = [{:(0,-i),(-i,0):}] , then (A + B)(A - B) equals

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A = [(0,-i),(i,0)] B = [(1,0),(0,-1)] then A B+ BA is

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Let A = [{:(1,2),(3,4):}]=[a(ij)], where i, j = 1, 2, If its inverse m...

    Text Solution

    |

  2. If [{:(1,-3,2),(2,-8,5),(4,2,lambda):}] is not an invertible matrix, t...

    Text Solution

    |

  3. If A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):}],C=[{:(0,-i),(-i,0):}], then...

    Text Solution

    |

  4. If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|, then what is x - iy equ...

    Text Solution

    |

  5. If |A| = 8, where A is square matrix of order 3, then what is |adj A| ...

    Text Solution

    |

  6. Consider the following statements in respect of a square matrix A and ...

    Text Solution

    |

  7. If a matrix A is such that 3A^3 +2A^2+5A+I= 0, then A^(-1) is equal to

    Text Solution

    |

  8. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  9. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  10. What is the value of |{:(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3))...

    Text Solution

    |

  11. If the matrix A=[{:(2-x," "1,1),(" "1,3-x,0),(-1,-3,-x):}] is singular...

    Text Solution

    |

  12. Consider the following statements. I. The inverse of a square matrix...

    Text Solution

    |

  13. What is the value of the determinant |{:(x+1,x+2,x+4),(x+3,x+5,x+8),(x...

    Text Solution

    |

  14. If 5 and 7 are the roots of the equation |{:(x,4,5),(7,x,7),(5,8,x):}|...

    Text Solution

    |

  15. Find the value of k in which the system of equations kx + 2y = 5 and 3...

    Text Solution

    |

  16. If the matrix A=[{:(alpha, beta),(beta,alpha):}] is such that A^(2)=I,...

    Text Solution

    |

  17. If A=[{:(alpha,0),(1,1):}]and B=[{:(1,0),(2,1):}] such that A^(2)=B, t...

    Text Solution

    |

  18. A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}], then which of the follow...

    Text Solution

    |

  19. The simultaneous equations 3x + 5y = 7 and 6x + 10y = 18 have

    Text Solution

    |

  20. The roots of the equation |{:(x,alpha,1),(beta,x,1),(beta,gamma,1):}|=...

    Text Solution

    |