Home
Class 12
MATHS
What is the value of the determinant |{:...

What is the value of the determinant `|{:(x+1,x+2,x+4),(x+3,x+5,x+8),(x+7,x+10,x+14):}|` ?

A

x + 2

B

`x^(2) + 2`

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14 \end{vmatrix} \] we will simplify the determinant using properties of determinants. ### Step 1: Apply Column Operations We can simplify the determinant by performing column operations. Let's subtract the first column from the second and the third columns. \[ C_2 \rightarrow C_2 - C_1 \] \[ C_3 \rightarrow C_3 - C_1 \] This gives us: \[ D = \begin{vmatrix} x+1 & (x+2) - (x+1) & (x+4) - (x+1) \\ x+3 & (x+5) - (x+3) & (x+8) - (x+3) \\ x+7 & (x+10) - (x+7) & (x+14) - (x+7) \end{vmatrix} \] Calculating the new columns: \[ D = \begin{vmatrix} x+1 & 1 & 3 \\ x+3 & 2 & 5 \\ x+7 & 3 & 7 \end{vmatrix} \] ### Step 2: Apply Row Operations Next, we will simplify the determinant further by performing row operations. Let's subtract the first row from the second and the third rows. \[ R_2 \rightarrow R_2 - R_1 \] \[ R_3 \rightarrow R_3 - R_1 \] This gives us: \[ D = \begin{vmatrix} x+1 & 1 & 3 \\ (x+3) - (x+1) & 2 - 1 & 5 - 3 \\ (x+7) - (x+1) & 3 - 1 & 7 - 3 \end{vmatrix} \] Calculating the new rows: \[ D = \begin{vmatrix} x+1 & 1 & 3 \\ 2 & 1 & 2 \\ 6 & 2 & 4 \end{vmatrix} \] ### Step 3: Calculate the Determinant Now we can calculate the determinant using the formula for a 3x3 matrix: \[ D = a(ei-fh) - b(di-fg) + c(dh-eg) \] Where \( a = x+1, b = 1, c = 3 \), and the rest of the elements can be identified as follows: \[ D = (x+1) \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} - 1 \begin{vmatrix} 2 & 2 \\ 6 & 4 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 6 & 2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = (1)(4) - (2)(2) = 4 - 4 = 0\) 2. \(\begin{vmatrix} 2 & 2 \\ 6 & 4 \end{vmatrix} = (2)(4) - (2)(6) = 8 - 12 = -4\) 3. \(\begin{vmatrix} 2 & 1 \\ 6 & 2 \end{vmatrix} = (2)(2) - (1)(6) = 4 - 6 = -2\) Substituting back into the determinant formula: \[ D = (x+1)(0) - 1(-4) + 3(-2) \] This simplifies to: \[ D = 0 + 4 - 6 = -2 \] ### Final Answer Thus, the value of the determinant is \[ \boxed{-2} \]

To find the value of the determinant \[ D = \begin{vmatrix} x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(x+2,x+3,x+5),(x+4,x+6,x+9),(x+8,x+11,x+15)| is

Write the value of the determinant |2 3 4 2x3x4x5 6 8| .

Write the value of the determinant |2 3 4 5 6 8 6x9x 12 x|

det[[x+1,x+2,x+4x+3,x+5,x+8x+7,x+10,x+14]]=-2

Consider the determinant D= |(x+2,2x+3,3x+4), (x+1, x+1, x+1), (0, 1, 3x +8)| If the determinant is expanded in the power of x, the coefficient of x is

Find the value of x : 2(x-1) - 3( x -3 ) = 5 ( x -5 ) - 4 ( x - 8 )

If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =3 then the value of |{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| is

Find the value of x if (14x-4):(8x-1)=(3x+8):(9x+5)

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If the matrix A=[{:(2-x," "1,1),(" "1,3-x,0),(-1,-3,-x):}] is singular...

    Text Solution

    |

  2. Consider the following statements. I. The inverse of a square matrix...

    Text Solution

    |

  3. What is the value of the determinant |{:(x+1,x+2,x+4),(x+3,x+5,x+8),(x...

    Text Solution

    |

  4. If 5 and 7 are the roots of the equation |{:(x,4,5),(7,x,7),(5,8,x):}|...

    Text Solution

    |

  5. Find the value of k in which the system of equations kx + 2y = 5 and 3...

    Text Solution

    |

  6. If the matrix A=[{:(alpha, beta),(beta,alpha):}] is such that A^(2)=I,...

    Text Solution

    |

  7. If A=[{:(alpha,0),(1,1):}]and B=[{:(1,0),(2,1):}] such that A^(2)=B, t...

    Text Solution

    |

  8. A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}], then which of the follow...

    Text Solution

    |

  9. The simultaneous equations 3x + 5y = 7 and 6x + 10y = 18 have

    Text Solution

    |

  10. The roots of the equation |{:(x,alpha,1),(beta,x,1),(beta,gamma,1):}|=...

    Text Solution

    |

  11. What is the value of the determinant |{:(a-b,b+c,a),(b-c,c+a,b),(c-a,a...

    Text Solution

    |

  12. If |{:(p,-q,0),(0,p,q),(q,0,p):}|=0, then which one of the following i...

    Text Solution

    |

  13. If a^(-1)+b^(-1)+c^(-1)=0 such that |{:(1+a," "1," "1),(" "1,1+b," "1)...

    Text Solution

    |

  14. Consider the following statements in respect of the square matrices A ...

    Text Solution

    |

  15. For what value of x does (1" "3" "2)({:(1,3,0),(3,0,2),(2,0,1):})({:(0...

    Text Solution

    |

  16. Consider the following statements : 1. every zero matrix is a square...

    Text Solution

    |

  17. If a matrix A has inverses B and C, then which one of the following is...

    Text Solution

    |

  18. If A=({:(1,2),(2,3):})and B=({:(1,0),(1,0):}) then what is determinant...

    Text Solution

    |

  19. What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

    Text Solution

    |

  20. If A and B are two matrices such that A B=A and B A=B , then B^2 is...

    Text Solution

    |