Home
Class 12
MATHS
If A =[{:(1,2),(1,1):}]and B = [{:(0,-1)...

If `A =[{:(1,2),(1,1):}]and B = [{:(0,-1),(1,2):}]`, then what is `B^(-1)A^(-1)` equal to ?

A

`[{:(1,-3),(-1,2):}]`

B

`[{:(-1,3),(1,-2):}]`

C

`[{:(-1,3),(-1,-2):}]`

D

`[{:(-1,-3),(1,-2):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( B^{-1} A^{-1} \), we can use the property of inverses which states that \( A^{-1}B^{-1} = (AB)^{-1} \). Therefore, we can first compute the product \( AB \) and then find its inverse. ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \] ### Step 2: Compute the product \( AB \) To compute \( AB \): \[ AB = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \] Calculating the elements of the product: - First row, first column: \( 1 \cdot 0 + 2 \cdot 1 = 2 \) - First row, second column: \( 1 \cdot (-1) + 2 \cdot 2 = -1 + 4 = 3 \) - Second row, first column: \( 1 \cdot 0 + 1 \cdot 1 = 1 \) - Second row, second column: \( 1 \cdot (-1) + 1 \cdot 2 = -1 + 2 = 1 \) Thus, \[ AB = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \] ### Step 3: Compute the determinant of \( AB \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). For our matrix \( AB \): \[ \text{det}(AB) = (2)(1) - (3)(1) = 2 - 3 = -1 \] ### Step 4: Compute the adjoint of \( AB \) The adjoint of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \). For our matrix \( AB \): \[ \text{adj}(AB) = \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} \] ### Step 5: Compute the inverse of \( AB \) Using the formula for the inverse: \[ (AB)^{-1} = \frac{1}{\text{det}(AB)} \cdot \text{adj}(AB) \] Substituting the values we calculated: \[ (AB)^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \] ### Step 6: Conclude \( B^{-1} A^{-1} \) Thus, we have: \[ B^{-1} A^{-1} = (AB)^{-1} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \] ### Final Answer: \[ B^{-1} A^{-1} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \]

To find \( B^{-1} A^{-1} \), we can use the property of inverses which states that \( A^{-1}B^{-1} = (AB)^{-1} \). Therefore, we can first compute the product \( AB \) and then find its inverse. ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If A =[{:(1,-1),(1,2):}]and B = [{:(1,0),(1,1):}] , then what is B^(-1)A^(-1) equal to ?

If A=[{:(1,2),(1,1):}] and B = [{:(0,-1),(1,2):}] , then what is the value of B^(-1) A^(-1)

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A = a [{:(-1, 0), (-1, 2):}]"nd B "= [{:(3, 2), (-1, 0):}], " then find "B^(-1), A^(-1).

If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If |{:(8,-5,1),(5,x,1),(6,3,1):}|=2 then what is the value of x ?

    Text Solution

    |

  2. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  3. If A =[{:(1,2),(1,1):}]and B = [{:(0,-1),(1,2):}], then what is B^(-1)...

    Text Solution

    |

  4. If each element of as third order determinant of value /\ is multiplie...

    Text Solution

    |

  5. Inverse of diagonal matrix is (A) a diagonal matrix (B) symmetric (C) ...

    Text Solution

    |

  6. If A=[{:(3,4),(5,6),(7,8):}] and B = [{:(3,5,7),(4,6,8):}]. Then which...

    Text Solution

    |

  7. If the sum of the matrices [{:(x),(x),(y):}],[{:(y),(y),(z):}]and[{:(z...

    Text Solution

    |

  8. If the matrix AB is a zero matrix, then which one of the following is ...

    Text Solution

    |

  9. If the matrix [{:(alpha,2,2),(-3,0,4),(1,-1,1):}] is not invertible, t...

    Text Solution

    |

  10. The value of the determinant |{:(x^(2),1,y^(2)+z^(2)),(y^(2),1,z^(2)+x...

    Text Solution

    |

  11. A square matrix [a(ij)] such that a(ij)=0 for i ne j and a(ij) = k whe...

    Text Solution

    |

  12. If A and B are two non-singular square matrices such that AB = A, then...

    Text Solution

    |

  13. What is the value of the minor of the element 9 in the determinant |{:...

    Text Solution

    |

  14. The roots of the equation |{:(" "1,t-1," "1),(t-1," "1," "1),(" "1," "...

    Text Solution

    |

  15. The value of the determinant |{:(m,n,p),(p,m,n),(n,p,m):}|

    Text Solution

    |

  16. The determinant of a orthogonal matrix is :

    Text Solution

    |

  17. If D is determinant of order 3 and D' is the determinant obtained by r...

    Text Solution

    |

  18. Consider the following statements : 1. A matrix is not a number 2....

    Text Solution

    |

  19. Consider the following statements : 1. The product of two non-zero m...

    Text Solution

    |

  20. Consider the following statements : 1. The matrix ({:(1,2,1),(a,2a,1...

    Text Solution

    |