Home
Class 12
MATHS
The value of the determinant |{:(m,n,p),...

The value of the determinant `|{:(m,n,p),(p,m,n),(n,p,m):}|`

A

is a perfect cube

B

is a perfect square

C

has linear factor

D

is zero

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( D = \begin{vmatrix} m & n & p \\ p & m & n \\ n & p & m \end{vmatrix} \), we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} m & n & p \\ p & m & n \\ n & p & m \end{vmatrix} \] ### Step 2: Perform column operations We will add all the columns to the first column. This means we will replace the first column with the sum of all three columns: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} m+n+p & n & p \\ p+m+n & m & n \\ n+p+m & p & m \end{vmatrix} \] Now simplifying the first column: \[ D = \begin{vmatrix} m+n+p & n & p \\ m+n+p & m & n \\ m+n+p & p & m \end{vmatrix} \] ### Step 3: Factor out the common term Notice that the first column has a common factor of \( m+n+p \). We can factor this out: \[ D = (m+n+p) \begin{vmatrix} 1 & n & p \\ 1 & m & n \\ 1 & p & m \end{vmatrix} \] ### Step 4: Calculate the remaining determinant Now we need to calculate the determinant: \[ \begin{vmatrix} 1 & n & p \\ 1 & m & n \\ 1 & p & m \end{vmatrix} \] Using the formula for a 3x3 determinant: \[ = 1 \cdot (m \cdot m - n \cdot p) - n \cdot (1 \cdot m - 1 \cdot p) + p \cdot (1 \cdot n - 1 \cdot p) \] This simplifies to: \[ = m^2 - np - n(m - p) + p(n - p) \] \[ = m^2 - np - nm + np + pn - p^2 \] \[ = m^2 - nm - p^2 + pn \] ### Step 5: Combine the results Thus, we have: \[ D = (m+n+p)(m^2 - nm - p^2 + pn) \] ### Final Result The value of the determinant is: \[ D = (m+n+p)(m^2 - nm - p^2 + pn) \]

To find the value of the determinant \( D = \begin{vmatrix} m & n & p \\ p & m & n \\ n & p & m \end{vmatrix} \), we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} m & n & p \\ p & m & n \\ n & p & m \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant det[[m,n,pp,m,nn,p,m]] is

If |{:(a,b,c),(l,m,n),(p,q,r):}|=2 , then what is the value of the determinant |{:(6a,3b,15c),(2l,m,5n),(2p,q,5r):}| ?

If |(a,b,c),(l,m,n),(p,q,r)|=2 , then what is the value of the determinant |(6a,3b,15c),(2l,m,5n),(2p,q,5r)| = ?

If the sum of m terms of an A.P is equal to these that n terms and also to the sum of the next p terms,prove (m+n)((1)/(m)-(1)/(p))=(m+p)((1)/(m)-(1)/(n))

If the sum of m terms of an A.P.is equal to the sum of either the next n terms or the next p terms,then prove that (m+n)((1)/(m)-(1)/(p))=(m+p)((1)/(m)-(1)/(n))

Find the value of sum_(p=1)^(n)(sum_(m=p)^(n)C_(m)^(m)C_(p)) And hence,find the value of lim_(n rarr oo)(1)/(3^(n))sum_(p=1)^(n)(sum_(m=p)^(n)C_(m)^(m)C_(p))

For nonnegative integers s and r , let {:((s),(r)):} = {:(s!)/((r! (s-r)!),(" 0"):} {:(" if "r le g),(" if "gts):} For positive integers m and n , let g (m,n) = sum_(p=0)^(m+n) (f(m,n,p))/{:((n+p),("p")):} where for nay nonnegative integer p , f(m,n,p) = sum_(i=0)^(p){:((n+i),(i)),((n+i),(p)),((p+n),(p-i)) Then which of the following statements is/are TRUE ?

What is the solution of the equation 10m - 16n + 2p +5 , if m=6, n=-4 and p = 3 ?

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. What is the value of the minor of the element 9 in the determinant |{:...

    Text Solution

    |

  2. The roots of the equation |{:(" "1,t-1," "1),(t-1," "1," "1),(" "1," "...

    Text Solution

    |

  3. The value of the determinant |{:(m,n,p),(p,m,n),(n,p,m):}|

    Text Solution

    |

  4. The determinant of a orthogonal matrix is :

    Text Solution

    |

  5. If D is determinant of order 3 and D' is the determinant obtained by r...

    Text Solution

    |

  6. Consider the following statements : 1. A matrix is not a number 2....

    Text Solution

    |

  7. Consider the following statements : 1. The product of two non-zero m...

    Text Solution

    |

  8. Consider the following statements : 1. The matrix ({:(1,2,1),(a,2a,1...

    Text Solution

    |

  9. The cofactor of the element 4 in the determinant |{:(1,2,3),(4,5,6),(7...

    Text Solution

    |

  10. If A is a square matrix of order 3 with |A|ne 0, then which one of the...

    Text Solution

    |

  11. If A =({:(i,0),(0,-i):}),B=({:(0,-1),(1,0):}),C=({:(0,i),(i,0):}) wher...

    Text Solution

    |

  12. If 2A=({:(2,1),(3,2):}), then what is A^(-1) equal to ?

    Text Solution

    |

  13. If ({:(2,3),(4,1):})xx({:(5,-2),(-3,1):})=({:(1,-1),(17,lambda):}), th...

    Text Solution

    |

  14. |[1,bc,bc(b+c)],[1,ca,ca(c+a)],[1,ab,ab(a+b)]|=0

    Text Solution

    |

  15. Consider the following statements in respect of the matrix A=[{:(0,1,2...

    Text Solution

    |

  16. Consider two matrices A=[{:(1,2),(2,1),(1,1):}]and B=[{:(1,2,-4),(2,1,...

    Text Solution

    |

  17. One of the roots of |{:(x+a," "b," "c),(" "a,x+b," "c),(" "a," "b,x+c)...

    Text Solution

    |

  18. If A is any matrix, then the product AA is defined only when A is a ma...

    Text Solution

    |

  19. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  20. If any two adjacent rows or columns of a determinant are intercharged ...

    Text Solution

    |