Home
Class 12
MATHS
Consider the following statements : 1....

Consider the following statements :
1. The matrix `({:(1,2,1),(a,2a,1),(b,2b,1):})`is singular.
2. The matrix `({:(c,2c,1),(a,2a,1),(b,2b,1):})`is non-singular.

A

1 only

B

2 only

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given matrices are singular or non-singular, we need to calculate their determinants. A matrix is singular if its determinant is zero; otherwise, it is non-singular. ### Step 1: Analyze the first matrix The first matrix is: \[ A = \begin{pmatrix} 1 & 2 & 1 \\ a & 2a & 1 \\ b & 2b & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix A Using the determinant formula for a 3x3 matrix: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 2a & 1 \\ 2b & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} a & 1 \\ b & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} a & 2a \\ b & 2b \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 2a & 1 \\ 2b & 1 \end{vmatrix} = 2a \cdot 1 - 1 \cdot 2b = 2a - 2b\) 2. \(\begin{vmatrix} a & 1 \\ b & 1 \end{vmatrix} = a \cdot 1 - 1 \cdot b = a - b\) 3. \(\begin{vmatrix} a & 2a \\ b & 2b \end{vmatrix} = a \cdot 2b - 2a \cdot b = 2ab - 2ab = 0\) Now substituting back into the determinant formula: \[ \text{det}(A) = 1(2a - 2b) - 2(a - b) + 1(0) \] \[ = 2a - 2b - 2a + 2b = 0 \] ### Conclusion for the first matrix Since \(\text{det}(A) = 0\), the first matrix is singular. ### Step 3: Analyze the second matrix The second matrix is: \[ B = \begin{pmatrix} c & 2c & 1 \\ a & 2a & 1 \\ b & 2b & 1 \end{pmatrix} \] ### Step 4: Calculate the determinant of matrix B Using the same determinant formula: \[ \text{det}(B) = c \cdot \begin{vmatrix} 2a & 1 \\ 2b & 1 \end{vmatrix} - 2c \cdot \begin{vmatrix} a & 1 \\ b & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} a & 2a \\ b & 2b \end{vmatrix} \] Calculating the 2x2 determinants (same as before): 1. \(\begin{vmatrix} 2a & 1 \\ 2b & 1 \end{vmatrix} = 2a - 2b\) 2. \(\begin{vmatrix} a & 1 \\ b & 1 \end{vmatrix} = a - b\) 3. \(\begin{vmatrix} a & 2a \\ b & 2b \end{vmatrix} = 0\) Substituting back into the determinant formula: \[ \text{det}(B) = c(2a - 2b) - 2c(a - b) + 0 \] \[ = c(2a - 2b - 2a + 2b) = c(0) = 0 \] ### Conclusion for the second matrix Since \(\text{det}(B) = 0\), the second matrix is also singular. ### Final Result 1. The first statement is **correct**: The matrix \(A\) is singular. 2. The second statement is **incorrect**: The matrix \(B\) is also singular.

To determine whether the given matrices are singular or non-singular, we need to calculate their determinants. A matrix is singular if its determinant is zero; otherwise, it is non-singular. ### Step 1: Analyze the first matrix The first matrix is: \[ A = \begin{pmatrix} 1 & 2 & 1 \\ a & 2a & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

Consider the following statements : I. The matrix ({:(1,2,1),(2,2a,1),(b,2b,1):}) is singular II. The matrix ({:(2,2c,1),(a,2a,1),(b,2b,1):}) in non-singular Which o the above statement is/are correct.

If the matrix [{:(1,2,x),(1,1,1),(2,1,-1):}] is singular , then the value of x is :

The matrix [(2,lambda,-4),(-1,3,4),(1,-2,-3)] is non singular , if :

In the matrix A=[(3-2x,x+1),(2,4)] is singular then X=?

For what value of x the matrix A=[[1,-2,3],[1,2,1],[x,2,-3]] is singular?

If the matrix [{:(2^(a), 32),(36, 12^(b)):}] is singular and if k = (2a)/(ca + 1) , then find c.

Find the value of x for which the matrix A=[(2//x,-1,2),(1,x,2x^(2)),(1,1//x,2)] is singular.

Consider the following statements : 1. If det A = 0, then det (adj A) = 0 2. If A is non-singular, the det(A^(-1)) = (det A)^(-1)

Consider the following statements : 1. If det A = 0, then det (adJ A) = 0 2. If A is non-singular, then det (A^(-1)) = (det A)^(-1)

If is a non-singular matrix, then det (A^(1))=

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Consider the following statements : 1. A matrix is not a number 2....

    Text Solution

    |

  2. Consider the following statements : 1. The product of two non-zero m...

    Text Solution

    |

  3. Consider the following statements : 1. The matrix ({:(1,2,1),(a,2a,1...

    Text Solution

    |

  4. The cofactor of the element 4 in the determinant |{:(1,2,3),(4,5,6),(7...

    Text Solution

    |

  5. If A is a square matrix of order 3 with |A|ne 0, then which one of the...

    Text Solution

    |

  6. If A =({:(i,0),(0,-i):}),B=({:(0,-1),(1,0):}),C=({:(0,i),(i,0):}) wher...

    Text Solution

    |

  7. If 2A=({:(2,1),(3,2):}), then what is A^(-1) equal to ?

    Text Solution

    |

  8. If ({:(2,3),(4,1):})xx({:(5,-2),(-3,1):})=({:(1,-1),(17,lambda):}), th...

    Text Solution

    |

  9. |[1,bc,bc(b+c)],[1,ca,ca(c+a)],[1,ab,ab(a+b)]|=0

    Text Solution

    |

  10. Consider the following statements in respect of the matrix A=[{:(0,1,2...

    Text Solution

    |

  11. Consider two matrices A=[{:(1,2),(2,1),(1,1):}]and B=[{:(1,2,-4),(2,1,...

    Text Solution

    |

  12. One of the roots of |{:(x+a," "b," "c),(" "a,x+b," "c),(" "a," "b,x+c)...

    Text Solution

    |

  13. If A is any matrix, then the product AA is defined only when A is a ma...

    Text Solution

    |

  14. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  15. If any two adjacent rows or columns of a determinant are intercharged ...

    Text Solution

    |

  16. If a ne b ne c are all positive, then the value of the determinant |{:...

    Text Solution

    |

  17. Let A and B be two matrices such that AB = A and BA = B. Which of the ...

    Text Solution

    |

  18. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  19. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  20. Consider the following statements : 1. Determinant is a square matri...

    Text Solution

    |