Home
Class 12
MATHS
If a ne b ne c are all positive, then th...

If `a ne b ne c` are all positive, then the value of the determinant `|{:(a,b,c),(b,c,a),(c,a,b):}|`is

A

non-negative

B

non-positive

C

negative

D

positive

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] we will follow these steps: ### Step 1: Apply Column Operations We will perform a column operation by adding all three columns together. Specifically, we will replace the first column with the sum of the first, second, and third columns. \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} a + b + c & b & c \\ a + b + c & c & a \\ a + b + c & a & b \end{vmatrix} \] ### Step 2: Factor Out the Common Term Now, we can factor out \( (a + b + c) \) from the first column: \[ D = (a + b + c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinant Now we need to calculate the determinant of the 3x3 matrix: \[ \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we can expand it: \[ = 1 \begin{vmatrix} c & a \\ a & b \end{vmatrix} - b \begin{vmatrix} 1 & a \\ 1 & b \end{vmatrix} + c \begin{vmatrix} 1 & c \\ 1 & a \end{vmatrix} \] Calculating these 2x2 determinants: 1. \(\begin{vmatrix} c & a \\ a & b \end{vmatrix} = cb - a^2\) 2. \(\begin{vmatrix} 1 & a \\ 1 & b \end{vmatrix} = b - a\) 3. \(\begin{vmatrix} 1 & c \\ 1 & a \end{vmatrix} = a - c\) Substituting these back, we get: \[ D = (a + b + c) \left( cb - a^2 - b(b - a) + c(a - c) \right) \] ### Step 4: Simplify the Expression Now, simplifying the expression inside the parentheses: \[ = (a + b + c) \left( cb - a^2 - b^2 + ab + ac - c^2 \right) \] ### Step 5: Factor the Result Notice that the expression \( cb - a^2 - b^2 + ab + ac - c^2 \) can be rewritten as: \[ = -\frac{1}{2} \left( (a-b)^2 + (b-c)^2 + (c-a)^2 \right) \] ### Step 6: Final Expression Thus, we have: \[ D = (a + b + c) \left( -\frac{1}{2} \left( (a-b)^2 + (b-c)^2 + (c-a)^2 \right) \right) \] Since \( a, b, c \) are all positive and distinct, \( (a-b)^2 + (b-c)^2 + (c-a)^2 > 0 \). Therefore, the determinant \( D \) is negative. ### Conclusion Thus, the value of the determinant is negative. \[ \text{Final Answer: } D < 0 \]

To find the value of the determinant \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If a ne b ne c all are positive, then the value of determinant |(a,b,c),(b,c,a),(c,a,b)| is

The value of determinant |{:(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c):}| is

What is the value of the determinant |{:(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c):}| ?

If a, b, c are positive and unequal, show that value of the determinant Delta=|(a,b,c),(b,c,a),(c,a,b)| is negative

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

What is the value of the determinant |(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c)| ?

If a, b and c are real numbers, then the value of the determinant |(1-a,a-b-c,b+c),(1-b,b-c-a,c+a),(1-c,c-a-b,a+b)| is

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  2. If any two adjacent rows or columns of a determinant are intercharged ...

    Text Solution

    |

  3. If a ne b ne c are all positive, then the value of the determinant |{:...

    Text Solution

    |

  4. Let A and B be two matrices such that AB = A and BA = B. Which of the ...

    Text Solution

    |

  5. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  6. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  7. Consider the following statements : 1. Determinant is a square matri...

    Text Solution

    |

  8. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  9. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  10. If {:A=[(4,x+2),(2x-3,x+1)]:} is symmetric, then x =

    Text Solution

    |

  11. If |{:(a,b,0),(0,a,b),(b,0,a):}|=0, then which one of the following is...

    Text Solution

    |

  12. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |

  13. Which one of the following matrices is an elementary matrix ?

    Text Solution

    |

  14. If A=[{:(2,7),(1,5):}] then that is A + 3A^(-1) equal to ?

    Text Solution

    |

  15. The matrix [{:(" "0,-4+i),(4+I," "0):}] is

    Text Solution

    |

  16. Consider the following in respect of two non-singular matrices A and B...

    Text Solution

    |

  17. If X=[{:(3,-4),(1,-1):}],B=[{:(5,2),(-2,1):}]and A=[{:(p,q),(r,s):}] s...

    Text Solution

    |

  18. A=[(x+y,y),(2x,x-y)] B=[(2),(-1)]and C = [(3),(2)] If AB = C, th...

    Text Solution

    |

  19. The value of |{:(1," "1," "1),(1,1+x," "1),(1," "1,1+y):}|is

    Text Solution

    |

  20. If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(...

    Text Solution

    |