Home
Class 12
MATHS
If the matrix A is such that ({:(1,3),(...

If the matrix A is such that `({:(1,3),(0,1):})A=({:(1,1),(0,-1):})`, then what is A equal to ?

A

`({:(1,4),(0,-1):})`

B

`({:(1,4),(0,1):})`

C

`({:(-1,4),(0,-1):})`

D

`({:(1,-4),(0,-1):})`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) such that \[ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \] we can follow these steps: ### Step 1: Identify the matrices involved We have the matrix \( B = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \) and the resulting matrix \( C = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \). We need to find the matrix \( A \). ### Step 2: Multiply both sides by the inverse of matrix \( B \) To isolate \( A \), we can multiply both sides of the equation by the inverse of \( B \) from the left: \[ B^{-1} B A = B^{-1} C \] This simplifies to: \[ A = B^{-1} C \] ### Step 3: Calculate the inverse of matrix \( B \) The formula for the inverse of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( B = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \): - \( a = 1 \) - \( b = 3 \) - \( c = 0 \) - \( d = 1 \) The determinant \( \text{det}(B) = ad - bc = 1 \cdot 1 - 3 \cdot 0 = 1 \). Thus, the inverse \( B^{-1} \) is: \[ B^{-1} = \frac{1}{1} \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \] ### Step 4: Multiply \( B^{-1} \) by \( C \) Now we need to calculate \( A = B^{-1} C \): \[ A = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \] ### Step 5: Perform the matrix multiplication To multiply the matrices, we calculate each element: 1. First row, first column: \( 1 \cdot 1 + (-3) \cdot 0 = 1 \) 2. First row, second column: \( 1 \cdot 1 + (-3) \cdot (-1) = 1 + 3 = 4 \) 3. Second row, first column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) 4. Second row, second column: \( 0 \cdot 1 + 1 \cdot (-1) = 0 - 1 = -1 \) Thus, we have: \[ A = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix} \] ### Final Answer Therefore, the matrix \( A \) is: \[ A = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix} \]

To find the matrix \( A \) such that \[ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If [{:(1,3),(0,1):}]A=[{:(1,-1),(0,1):}] , then what is the matrix A ?

If A is any 2 xx matrix such that [{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}] then what is A equal to ?

Find the matrix A such that ([1,1],[0,1])A=([3,3,5],[1,0,1])

The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

If A=[{:(0,1),(1,0):}] then the matrix A is

" (b) Find the matrix "A" such that ([1,1],[0,1])A=([3,3,5],[1,0,1])

Matrix [{:(1,0),(0,1):}] is :

If the determinant |(x, 1, 3),(0, 0,1),(1, x, 4)|=0 then what is x equal to ?

If for a matrix A , absA=6 and adj A={:[(1,-2,4),(4,1,1),(-1,k,0)]:} , then k is equal to

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Let A and B be two matrices such that AB = A and BA = B. Which of the ...

    Text Solution

    |

  2. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  3. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  4. Consider the following statements : 1. Determinant is a square matri...

    Text Solution

    |

  5. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  6. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  7. If {:A=[(4,x+2),(2x-3,x+1)]:} is symmetric, then x =

    Text Solution

    |

  8. If |{:(a,b,0),(0,a,b),(b,0,a):}|=0, then which one of the following is...

    Text Solution

    |

  9. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |

  10. Which one of the following matrices is an elementary matrix ?

    Text Solution

    |

  11. If A=[{:(2,7),(1,5):}] then that is A + 3A^(-1) equal to ?

    Text Solution

    |

  12. The matrix [{:(" "0,-4+i),(4+I," "0):}] is

    Text Solution

    |

  13. Consider the following in respect of two non-singular matrices A and B...

    Text Solution

    |

  14. If X=[{:(3,-4),(1,-1):}],B=[{:(5,2),(-2,1):}]and A=[{:(p,q),(r,s):}] s...

    Text Solution

    |

  15. A=[(x+y,y),(2x,x-y)] B=[(2),(-1)]and C = [(3),(2)] If AB = C, th...

    Text Solution

    |

  16. The value of |{:(1," "1," "1),(1,1+x," "1),(1," "1,1+y):}|is

    Text Solution

    |

  17. If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(...

    Text Solution

    |

  18. The matrix A=[[1,3,2],[1,x-1,1],[2,7,x-3]] will have inverse for every...

    Text Solution

    |

  19. If the value of the determinants |(a,1,1),(1,b,1),(1,1,c)| is positive...

    Text Solution

    |

  20. Consider the following statements in respect of the determinant |[cos^...

    Text Solution

    |