Home
Class 12
MATHS
A=[(x+y,y),(2x,x-y)] B=[(2),(-1)]and C...

`A=[(x+y,y),(2x,x-y)]`
`B=[(2),(-1)]and C = [(3),(2)]`
If AB = C, then what is `A^(2)` equal to ?

A

`[{:(6,-10),(4,26):}]`

B

`[{:(-10,5),(4,24):}]`

C

`[{:(-5,-6),(-4,-20):}]`

D

`[{:(-5,-7),(-5,20):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 \) given that \( AB = C \), where: \[ A = \begin{pmatrix} x+y & y \\ 2x & x-y \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \] ### Step 1: Calculate \( AB \) We start by multiplying matrix \( A \) by matrix \( B \): \[ AB = \begin{pmatrix} x+y & y \\ 2x & x-y \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \] Calculating the first element of \( AB \): \[ (x+y) \cdot 2 + y \cdot (-1) = 2(x+y) - y = 2x + 2y - y = 2x + y \] Calculating the second element of \( AB \): \[ 2x \cdot 2 + (x-y) \cdot (-1) = 4x - (x - y) = 4x - x + y = 3x + y \] Thus, we have: \[ AB = \begin{pmatrix} 2x + y \\ 3x + y \end{pmatrix} \] ### Step 2: Set up equations from \( AB = C \) From the equation \( AB = C \), we have: \[ \begin{pmatrix} 2x + y \\ 3x + y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \] This gives us the following system of equations: 1. \( 2x + y = 3 \) (Equation 1) 2. \( 3x + y = 2 \) (Equation 2) ### Step 3: Solve the system of equations We can solve these equations by elimination or substitution. Let's subtract Equation 1 from Equation 2: \[ (3x + y) - (2x + y) = 2 - 3 \] \[ 3x - 2x + y - y = -1 \] \[ x = -1 \] Now, substitute \( x = -1 \) into Equation 1: \[ 2(-1) + y = 3 \] \[ -2 + y = 3 \] \[ y = 5 \] Thus, we have \( x = -1 \) and \( y = 5 \). ### Step 4: Substitute \( x \) and \( y \) back into \( A \) Now we substitute \( x \) and \( y \) back into matrix \( A \): \[ A = \begin{pmatrix} -1 + 5 & 5 \\ 2(-1) & -1 - 5 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ -2 & -6 \end{pmatrix} \] ### Step 5: Calculate \( A^2 \) Now, we need to calculate \( A^2 = A \cdot A \): \[ A^2 = \begin{pmatrix} 4 & 5 \\ -2 & -6 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ -2 & -6 \end{pmatrix} \] Calculating the elements of \( A^2 \): 1. First row, first column: \[ 4 \cdot 4 + 5 \cdot (-2) = 16 - 10 = 6 \] 2. First row, second column: \[ 4 \cdot 5 + 5 \cdot (-6) = 20 - 30 = -10 \] 3. Second row, first column: \[ -2 \cdot 4 + (-6) \cdot (-2) = -8 + 12 = 4 \] 4. Second row, second column: \[ -2 \cdot 5 + (-6) \cdot (-6) = -10 + 36 = 26 \] Thus, we have: \[ A^2 = \begin{pmatrix} 6 & -10 \\ 4 & 26 \end{pmatrix} \] ### Final Answer \[ A^2 = \begin{pmatrix} 6 & -10 \\ 4 & 26 \end{pmatrix} \]

To solve the problem, we need to find \( A^2 \) given that \( AB = C \), where: \[ A = \begin{pmatrix} x+y & y \\ 2x & x-y \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \] ### Step 1: Calculate \( AB \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

A=[{:(x+y," "y),(" "x,x-y):}],B=[{:(3),(-2):}]and C=[{:(4),(-2):}] . If AB = C, then what is A^(2) equal to ?

A=[{:(x+y, y),(x, x-y):}]_(2) B=[{:(3),(-2):}] and C=[{:(4),(-2):}] , If AB =C. then what is A^(2) equal to ?

If [(x+y,y),(2x,x-y)][(2),(-1)]=[3/2] then x.y is equal to :

If 2b = a + c and y^(2) = xz , then what is x^(b-c) y^(c-a)z^(a-b) equal to ?

If x/2 + y/3 = 4 and 2/x + 3/y = 1, then what is x + y equal to ?

If (x)/(2)+(y)/(3)=4 "and" (2)/(x)+(3)/(y)=1 then what is x+y equal to ?

If [(2x+y,0),(5,x)] = [(5,0),(5,3)] then y is equal to (a) 1 (b) 3 (c) 2 (d) -1

a ^(2) x + b^(2) y = c ^(2) , x + y = 2ab

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Consider the following in respect of two non-singular matrices A and B...

    Text Solution

    |

  2. If X=[{:(3,-4),(1,-1):}],B=[{:(5,2),(-2,1):}]and A=[{:(p,q),(r,s):}] s...

    Text Solution

    |

  3. A=[(x+y,y),(2x,x-y)] B=[(2),(-1)]and C = [(3),(2)] If AB = C, th...

    Text Solution

    |

  4. The value of |{:(1," "1," "1),(1,1+x," "1),(1," "1,1+y):}|is

    Text Solution

    |

  5. If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(...

    Text Solution

    |

  6. The matrix A=[[1,3,2],[1,x-1,1],[2,7,x-3]] will have inverse for every...

    Text Solution

    |

  7. If the value of the determinants |(a,1,1),(1,b,1),(1,1,c)| is positive...

    Text Solution

    |

  8. Consider the following statements in respect of the determinant |[cos^...

    Text Solution

    |

  9. If A=[{:(1,0,-2),(2,-3,4):}], then the matrix X for which 2X + 3A = 0 ...

    Text Solution

    |

  10. If A=[{:(1,1,-1),(2,-3,4),(3,-2,3):}]and B=[{:(-1,-2,-1),(6,12,6),(5,1...

    Text Solution

    |

  11. If A is an invertible matrix of order n and k is any positive real num...

    Text Solution

    |

  12. If A is an orthogonal matrix of order 3 and B = [{:(1,2,3),(-3,0,2),(2...

    Text Solution

    |

  13. If a, b, c are real numbers, then the value the determinant |(1-a,a-...

    Text Solution

    |

  14. Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(...

    Text Solution

    |

  15. Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(...

    Text Solution

    |

  16. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  17. Consider the following in respect of the matrix A=({:(-1,1),(1,-1):}):...

    Text Solution

    |

  18. Which of the following determinants have value 'zero'? 1. |{:(41,1,...

    Text Solution

    |

  19. The system of linear equations kx + y + z = 1, x + ky + z = 1 and x + ...

    Text Solution

    |

  20. If A is semy square matrix of order 3 and det A = 5, then what is det[...

    Text Solution

    |