Home
Class 12
MATHS
If A=[{:(1,1,-1),(2,-3,4),(3,-2,3):}]and...

If `A=[{:(1,1,-1),(2,-3,4),(3,-2,3):}]and B=[{:(-1,-2,-1),(6,12,6),(5,10,5):}]` then which of the following is/are correct ?
1. A and B commute.
2. AB is a null matrix.
Select the correct answer using the code given below :

A

1 only

B

2 only

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrices \( A \) and \( B \) and check the two statements provided. Given: \[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we will multiply matrix \( A \) by matrix \( B \). \[ AB = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix} \begin{pmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{pmatrix} \] Calculating each element of the resulting matrix: - **First row, first column**: \[ 1 \cdot (-1) + 1 \cdot 6 + (-1) \cdot 5 = -1 + 6 - 5 = 0 \] - **First row, second column**: \[ 1 \cdot (-2) + 1 \cdot 12 + (-1) \cdot 10 = -2 + 12 - 10 = 0 \] - **First row, third column**: \[ 1 \cdot (-1) + 1 \cdot 6 + (-1) \cdot 5 = -1 + 6 - 5 = 0 \] - **Second row, first column**: \[ 2 \cdot (-1) + (-3) \cdot 6 + 4 \cdot 5 = -2 - 18 + 20 = 0 \] - **Second row, second column**: \[ 2 \cdot (-2) + (-3) \cdot 12 + 4 \cdot 10 = -4 - 36 + 40 = 0 \] - **Second row, third column**: \[ 2 \cdot (-1) + (-3) \cdot 6 + 4 \cdot 5 = -2 - 18 + 20 = 0 \] - **Third row, first column**: \[ 3 \cdot (-1) + (-2) \cdot 6 + 3 \cdot 5 = -3 - 12 + 15 = 0 \] - **Third row, second column**: \[ 3 \cdot (-2) + (-2) \cdot 12 + 3 \cdot 10 = -6 - 24 + 30 = 0 \] - **Third row, third column**: \[ 3 \cdot (-1) + (-2) \cdot 6 + 3 \cdot 5 = -3 - 12 + 15 = 0 \] Thus, we find: \[ AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 2: Check if \( A \) and \( B \) commute Next, we need to calculate \( BA \). \[ BA = \begin{pmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix} \] Calculating each element of the resulting matrix: - **First row, first column**: \[ -1 \cdot 1 + (-2) \cdot 2 + (-1) \cdot 3 = -1 - 4 - 3 = -8 \] - **First row, second column**: \[ -1 \cdot 1 + (-2) \cdot (-3) + (-1) \cdot (-2) = -1 + 6 + 2 = 7 \] - **First row, third column**: \[ -1 \cdot (-1) + (-2) \cdot 4 + (-1) \cdot 3 = 1 - 8 - 3 = -10 \] - **Second row, first column**: \[ 6 \cdot 1 + 12 \cdot 2 + 6 \cdot 3 = 6 + 24 + 18 = 48 \] - **Second row, second column**: \[ 6 \cdot 1 + 12 \cdot (-3) + 6 \cdot (-2) = 6 - 36 - 12 = -42 \] - **Second row, third column**: \[ 6 \cdot (-1) + 12 \cdot 4 + 6 \cdot 3 = -6 + 48 + 18 = 60 \] - **Third row, first column**: \[ 5 \cdot 1 + 10 \cdot 2 + 5 \cdot 3 = 5 + 20 + 15 = 40 \] - **Third row, second column**: \[ 5 \cdot 1 + 10 \cdot (-3) + 5 \cdot (-2) = 5 - 30 - 10 = -35 \] - **Third row, third column**: \[ 5 \cdot (-1) + 10 \cdot 4 + 5 \cdot 3 = -5 + 40 + 15 = 50 \] Thus, we find: \[ BA = \begin{pmatrix} -8 & 7 & -10 \\ 48 & -42 & 60 \\ 40 & -35 & 50 \end{pmatrix} \] ### Conclusion 1. Since \( AB \) is a null matrix, statement 2 is correct. 2. Since \( AB \neq BA \), statement 1 is incorrect. **Final Answer**: The correct option is **2 only**.

To solve the problem, we need to analyze the matrices \( A \) and \( B \) and check the two statements provided. Given: \[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

A=[{:(1,-1),(2,3):}]and B=[{:(2,3),(-1,-2):}] , then which of the following is/are correct ? 1. AB(A^(-1)B^(-1)) is a unit matrix. 2. (AB)^(-1)=A^(-1)B^(-1) Select the correct answer using the code given below :

If A=[{:(1,-1),(2,3):}] and B=[{:(2,3),(-1,-2):}] then which of the following is/are correct ? 1. AB (A^(-1)B^(-1)) is a unit matrix. 2. (AB)^(-1)=A^(-1)B^(-1) Select the correct answer using the codes given below :

If A=[{:(3,1),(0,4):}] and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB=BA Select the correct answer using the code given below :

A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB = BA Select the correct answer using the codes given below.

If A=[{:(1,2),(2,3),(3,4):}] and B=[{:(1,2),(2,1):}] then Which one of the following is correct ?

If A is an orthogonal matrix of order 3 and B = [{:(1,2,3),(-3,0,2),(2,5,0):}] , then which of the following is/are correct ? 1. |AB|= +- 47 2. AB = BA Select the correct answer using the code given below :

IF A=pi//6 and B=pi//3 then which of the following is/are correct? 1. sinA+sinB=cos A+cos B 2. tanA+ tan B=cot A+ cot B Select the correct answer using the code given below:

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Consider the following statements in respect of the determinant |[cos^...

    Text Solution

    |

  2. If A=[{:(1,0,-2),(2,-3,4):}], then the matrix X for which 2X + 3A = 0 ...

    Text Solution

    |

  3. If A=[{:(1,1,-1),(2,-3,4),(3,-2,3):}]and B=[{:(-1,-2,-1),(6,12,6),(5,1...

    Text Solution

    |

  4. If A is an invertible matrix of order n and k is any positive real num...

    Text Solution

    |

  5. If A is an orthogonal matrix of order 3 and B = [{:(1,2,3),(-3,0,2),(2...

    Text Solution

    |

  6. If a, b, c are real numbers, then the value the determinant |(1-a,a-...

    Text Solution

    |

  7. Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(...

    Text Solution

    |

  8. Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(...

    Text Solution

    |

  9. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  10. Consider the following in respect of the matrix A=({:(-1,1),(1,-1):}):...

    Text Solution

    |

  11. Which of the following determinants have value 'zero'? 1. |{:(41,1,...

    Text Solution

    |

  12. The system of linear equations kx + y + z = 1, x + ky + z = 1 and x + ...

    Text Solution

    |

  13. If A is semy square matrix of order 3 and det A = 5, then what is det[...

    Text Solution

    |

  14. What is [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c):}]equal to ?

    Text Solution

    |

  15. Let ax^3+bx^2+cx+d =|(x+1,2x,3x),(2x+3,x+1,x), (2-x,3x+4,5x-1)| then w...

    Text Solution

    |

  16. Let ax^3+bx^2+cx+d =|(x+1,2x,3x),(2x+3,x+1,x), (2-x,3x+4,5x-1)| then w...

    Text Solution

    |

  17. If m=[[1,0],[0,1]]and n=[[0,1],[-1,0]], then what is the value of the ...

    Text Solution

    |

  18. If f{x}=[{:(cos x,-sinx,0),(sin x,cos x,0),(" "0," "0,1):}], then whic...

    Text Solution

    |

  19. Which of the following are correct in respect of the system of equatio...

    Text Solution

    |

  20. A=[{:(1,-1),(2,3):}]and B=[{:(2,3),(-1,-2):}], then which of the follo...

    Text Solution

    |