Home
Class 12
MATHS
Cosider the function f(x)=|{:(x^(3),sin ...

Cosider the function `f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}|`, where p is a constant.
What is the value of f'(0) ?

A

`p^(3)`

B

`3p^(3)`

C

`6p^(3)`

D

`-6p^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) \) defined as the determinant of a matrix, and then evaluate it at \( x = 0 \). ### Step-by-step Solution: 1. **Define the function**: The function is given as: \[ f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] 2. **Differentiate \( f(x) \)**: We need to differentiate the determinant with respect to \( x \). We will use the property of determinants that allows us to differentiate each row independently. - **Differentiate the first row**: \[ \frac{d}{dx}(x^3) = 3x^2, \quad \frac{d}{dx}(\sin x) = \cos x, \quad \frac{d}{dx}(\cos x) = -\sin x \] Thus, the derivative of the first row is: \[ \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] - **Differentiate the second row**: Since the second row contains constants, its derivative is zero: \[ \begin{vmatrix} x^3 & \sin x & \cos x \\ 0 & 0 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] - **Differentiate the third row**: Similarly, the third row also contains constants, so its derivative is zero: \[ \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ 0 & 0 & 0 \end{vmatrix} \] Therefore, we can express \( f'(x) \) as: \[ f'(x) = \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] 3. **Evaluate \( f'(0) \)**: Now we substitute \( x = 0 \) into \( f'(x) \): \[ f'(0) = \begin{vmatrix} 3(0)^2 & \cos(0) & -\sin(0) \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] 4. **Calculate the determinant**: We can expand the determinant along the first row: \[ f'(0) = 0 \cdot \begin{vmatrix} -1 & 0 \\ p^2 & p^3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} + 0 \cdot \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix} \] The first and third terms are zero, so we only need to calculate the second term: \[ = -\begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} = - (6 \cdot p^3 - 0) = -6p^3 \] 5. **Final Result**: Thus, the value of \( f'(0) \) is: \[ f'(0) = -6p^3 \]

To solve the problem, we need to find the derivative of the function \( f(x) \) defined as the determinant of a matrix, and then evaluate it at \( x = 0 \). ### Step-by-step Solution: 1. **Define the function**: The function is given as: \[ f(x) = \begin{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of p for which f''(0) = 0 ?

Consider the function f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p,p^(3)):}| where p is a constant. What is the value of f'(0) ?

Consider the function f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p^2,p^(3)):}| where p is a constant. What is the value of p for which f''(0)=0 ?

Consider the function f(x) = |(x^3,sinx,cosx),(6,-1,0),(p,p^2,p^3)|, where p is constant. What is the value of f'(0) ? What is the value of p for which f''(0)=0

Let f(x) = |{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is a constant. Then d^(3)/dx^(3){f(x)} at x=0 is

If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}| , where p is a constant, then (d^(3))/(dx^(3))(f(x)) , is

Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|,w h e r ep is a constant. Then (d^3)/(dx^3)(f(x)) at x=0 is (a)p (b) p-p^3 (c)p+p^3 (d) independent of p

Consider the function {:( f(x) (P(X))/(sin (x-2)), x ne 2 ),(=7,x=2):} Where P(x) is a polynomial such that P' ' (x) is always a constant and P(3) = 9. If f(x) is continuous at x = 2, then P(5) is equal to ________.

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If A is an orthogonal matrix of order 3 and B = [{:(1,2,3),(-3,0,2),(2...

    Text Solution

    |

  2. If a, b, c are real numbers, then the value the determinant |(1-a,a-...

    Text Solution

    |

  3. Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(...

    Text Solution

    |

  4. Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(...

    Text Solution

    |

  5. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  6. Consider the following in respect of the matrix A=({:(-1,1),(1,-1):}):...

    Text Solution

    |

  7. Which of the following determinants have value 'zero'? 1. |{:(41,1,...

    Text Solution

    |

  8. The system of linear equations kx + y + z = 1, x + ky + z = 1 and x + ...

    Text Solution

    |

  9. If A is semy square matrix of order 3 and det A = 5, then what is det[...

    Text Solution

    |

  10. What is [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c):}]equal to ?

    Text Solution

    |

  11. Let ax^3+bx^2+cx+d =|(x+1,2x,3x),(2x+3,x+1,x), (2-x,3x+4,5x-1)| then w...

    Text Solution

    |

  12. Let ax^3+bx^2+cx+d =|(x+1,2x,3x),(2x+3,x+1,x), (2-x,3x+4,5x-1)| then w...

    Text Solution

    |

  13. If m=[[1,0],[0,1]]and n=[[0,1],[-1,0]], then what is the value of the ...

    Text Solution

    |

  14. If f{x}=[{:(cos x,-sinx,0),(sin x,cos x,0),(" "0," "0,1):}], then whic...

    Text Solution

    |

  15. Which of the following are correct in respect of the system of equatio...

    Text Solution

    |

  16. A=[{:(1,-1),(2,3):}]and B=[{:(2,3),(-1,-2):}], then which of the follo...

    Text Solution

    |

  17. For the system of linear equations 2x+3y+5z=9, 7x+3y-2z=8 and 2x+3y+l...

    Text Solution

    |

  18. For the system of linear equations 2x+3y+5z=9, 7x+3y-2z=8 and 2x+3y+l...

    Text Solution

    |

  19. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  20. If B is a non-singular matrix and A is a square matrix, then det (B^(-...

    Text Solution

    |