Home
Class 12
MATHS
A=[{:(1,-1),(2,3):}]and B=[{:(2,3),(-1,-...

`A=[{:(1,-1),(2,3):}]and B=[{:(2,3),(-1,-2):}]`, then which of the following is/are correct ?
1. `AB(A^(-1)B^(-1))` is a unit matrix.
2. `(AB)^(-1)=A^(-1)B^(-1)`
Select the correct answer using the code given below :

A

1 only

B

2 only

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements given about matrices A and B. Given: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we perform matrix multiplication: \[ AB = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 2 + (-1) \cdot (-1) = 2 + 1 = 3 \) - First row, second column: \( 1 \cdot 3 + (-1) \cdot (-2) = 3 + 2 = 5 \) - Second row, first column: \( 2 \cdot 2 + 3 \cdot (-1) = 4 - 3 = 1 \) - Second row, second column: \( 2 \cdot 3 + 3 \cdot (-2) = 6 - 6 = 0 \) Thus, we have: \[ AB = \begin{pmatrix} 3 & 5 \\ 1 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^{-1} \) To find \( A^{-1} \), we need the determinant of \( A \): \[ \text{det}(A) = (1)(3) - (-1)(2) = 3 + 2 = 5 \] Now, the adjoint of \( A \) is obtained by swapping the diagonal elements and changing the signs of the off-diagonal elements: \[ \text{adj}(A) = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] Thus, \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{5} \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ### Step 3: Calculate \( B^{-1} \) Next, we calculate \( B^{-1} \): \[ \text{det}(B) = (2)(-2) - (3)(-1) = -4 + 3 = -1 \] The adjoint of \( B \) is: \[ \text{adj}(B) = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix} \] Thus, \[ B^{-1} = \frac{1}{\text{det}(B)} \cdot \text{adj}(B) = -1 \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \] ### Step 4: Calculate \( A^{-1}B^{-1} \) Now we find \( A^{-1}B^{-1} \): \[ A^{-1}B^{-1} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( \frac{3}{5} \cdot 2 + \frac{1}{5} \cdot (-1) = \frac{6}{5} - \frac{1}{5} = \frac{5}{5} = 1 \) - First row, second column: \( \frac{3}{5} \cdot 3 + \frac{1}{5} \cdot (-2) = \frac{9}{5} - \frac{2}{5} = \frac{7}{5} \) - Second row, first column: \( -\frac{2}{5} \cdot 2 + \frac{1}{5} \cdot (-1) = -\frac{4}{5} - \frac{1}{5} = -1 \) - Second row, second column: \( -\frac{2}{5} \cdot 3 + \frac{1}{5} \cdot (-2) = -\frac{6}{5} - \frac{2}{5} = -\frac{8}{5} \) Thus, \[ A^{-1}B^{-1} = \begin{pmatrix} 1 & \frac{7}{5} \\ -1 & -\frac{8}{5} \end{pmatrix} \] ### Step 5: Check if \( AB(A^{-1}B^{-1}) \) is a unit matrix Now we need to calculate \( AB(A^{-1}B^{-1}) \): \[ AB(A^{-1}B^{-1}) = \begin{pmatrix} 3 & 5 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \frac{7}{5} \\ -1 & -\frac{8}{5} \end{pmatrix} \] Calculating the elements: - First row, first column: \( 3 \cdot 1 + 5 \cdot (-1) = 3 - 5 = -2 \) - First row, second column: \( 3 \cdot \frac{7}{5} + 5 \cdot (-\frac{8}{5}) = \frac{21}{5} - \frac{40}{5} = -\frac{19}{5} \) - Second row, first column: \( 1 \cdot 1 + 0 \cdot (-1) = 1 \) - Second row, second column: \( 1 \cdot \frac{7}{5} + 0 \cdot (-\frac{8}{5}) = \frac{7}{5} \) Thus, \[ AB(A^{-1}B^{-1}) = \begin{pmatrix} -2 & -\frac{19}{5} \\ 1 & \frac{7}{5} \end{pmatrix} \] This is not a unit matrix, so the first statement is false. ### Step 6: Check if \( (AB)^{-1} = A^{-1}B^{-1} \) We already calculated \( AB \) and now we need to find \( (AB)^{-1} \). \[ \text{det}(AB) = -5 \quad \text{(as calculated earlier)} \] The adjoint of \( AB \): \[ \text{adj}(AB) = \begin{pmatrix} 0 & -1 \\ -5 & 3 \end{pmatrix} \] Thus, \[ (AB)^{-1} = \frac{1}{-5} \begin{pmatrix} 0 & -1 \\ -5 & 3 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{5} \\ 1 & -\frac{3}{5} \end{pmatrix} \] Now we compare \( (AB)^{-1} \) with \( A^{-1}B^{-1} \): Since \( A^{-1}B^{-1} \) was calculated as: \[ A^{-1}B^{-1} = \begin{pmatrix} 1 & \frac{7}{5} \\ -1 & -\frac{8}{5} \end{pmatrix} \] Clearly, \( (AB)^{-1} \neq A^{-1}B^{-1} \). ### Conclusion Both statements are false. ### Final Answer Neither 1 nor 2 is correct.

To solve the problem, we need to analyze the two statements given about matrices A and B. Given: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we perform matrix multiplication: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,-1),(2,3):}] and B=[{:(2,3),(-1,-2):}] then which of the following is/are correct ? 1. AB (A^(-1)B^(-1)) is a unit matrix. 2. (AB)^(-1)=A^(-1)B^(-1) Select the correct answer using the codes given below :

If A=[[1,-12,3]] and B=[[2,3-1,-2]], then which of the following is/are correct? 1.AB(A^(-1)B^(-1)) is a unit matrix.2.(AB)^(-1)=A^(-1)B^(-1)

If A=[{:(1,2),(2,3),(3,4):}] and B=[{:(1,2),(2,1):}] then Which one of the following is correct ?

If A=[{:(1,1,-1),(2,-3,4),(3,-2,3):}]and B=[{:(-1,-2,-1),(6,12,6),(5,10,5):}] then which of the following is/are correct ? 1. A and B commute. 2. AB is a null matrix. Select the correct answer using the code given below :

A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB = BA Select the correct answer using the codes given below.

If A=[{:(3,1),(0,4):}] and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB=BA Select the correct answer using the code given below :

If A is an orthogonal matrix of order 3 and B = [{:(1,2,3),(-3,0,2),(2,5,0):}] , then which of the following is/are correct ? 1. |AB|= +- 47 2. AB = BA Select the correct answer using the code given below :

IF A=pi//6 and B=pi//3 then which of the following is/are correct? 1. sinA+sinB=cos A+cos B 2. tanA+ tan B=cot A+ cot B Select the correct answer using the code given below:

If a+b+c=0, then which of the following are correct? 1. a^(3) + b^(3) + c^(3) = 3abc 2. a^(2) + b^(2) + c^(2) = -2(ab + bc + ca) 3. a^(3) + b^(3) + c^(3) = -3ab(a+b) Select the correct answer using the code given below

A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Verify AB=BA or not.

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If f{x}=[{:(cos x,-sinx,0),(sin x,cos x,0),(" "0," "0,1):}], then whic...

    Text Solution

    |

  2. Which of the following are correct in respect of the system of equatio...

    Text Solution

    |

  3. A=[{:(1,-1),(2,3):}]and B=[{:(2,3),(-1,-2):}], then which of the follo...

    Text Solution

    |

  4. For the system of linear equations 2x+3y+5z=9, 7x+3y-2z=8 and 2x+3y+l...

    Text Solution

    |

  5. For the system of linear equations 2x+3y+5z=9, 7x+3y-2z=8 and 2x+3y+l...

    Text Solution

    |

  6. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  7. If B is a non-singular matrix and A is a square matrix, then det (B^(-...

    Text Solution

    |

  8. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  9. If A=[cosalphasinalpha-sinalphacosalpha] , then verify that A^T\ A=I2 ...

    Text Solution

    |

  10. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  11. A=[{:(x+y," "y),(" "x,x-y):}],B=[{:(3),(-2):}]and C=[{:(4),(-2):}]. If...

    Text Solution

    |

  12. What is the value of the determinant |{:(1," "1," "1),(1,1+xyz," "1),(...

    Text Solution

    |

  13. If |{:(x,y,0),(0,x,y),(y,0,x):}|=0, then which one of the following is...

    Text Solution

    |

  14. Consider the set A of all determinants of order 3 with entries 0 or 1 ...

    Text Solution

    |

  15. If A = [{:(cos theta,sin theta),(-sin theta,cos theta):}] then what is...

    Text Solution

    |

  16. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  17. if A=[{:(0,1),(1,0):}],"then"A^(4)=?

    Text Solution

    |

  18. The matrix A has x rows and (x+5) column. If the matrix B has y rows a...

    Text Solution

    |

  19. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  20. The value of the determinant |{:("cos"^(2)(theta)/(2),"sin"^(2)(theta)...

    Text Solution

    |