Home
Class 12
MATHS
A=[{:(x+y," "y),(" "x,x-y):}],B=[{:(3),(...

`A=[{:(x+y," "y),(" "x,x-y):}],B=[{:(3),(-2):}]and C=[{:(4),(-2):}]`. If AB = C, then what is `A^(2)` equal to ?

A

`[{:(4,8),(-4,-16):}]`

B

`[{:(4,-4),(8,-16):}]`

C

`[{:(-4,-8),(4,12):}]`

D

`[{:(-4,-8),(8,12):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 \) given that \( AB = C \). Let's break this down step by step. ### Step 1: Define the Matrices We have the matrices: \[ A = \begin{pmatrix} x+y & y \\ x & x-y \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ -2 \end{pmatrix}, \quad C = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \] ### Step 2: Multiply Matrices A and B We need to calculate \( AB \): \[ AB = \begin{pmatrix} x+y & y \\ x & x-y \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \[ (x+y) \cdot 3 + y \cdot (-2) = 3(x+y) - 2y = 3x + 3y - 2y = 3x + y \] - Second row, first column: \[ x \cdot 3 + (x-y) \cdot (-2) = 3x - 2(x-y) = 3x - 2x + 2y = x + 2y \] Thus, we have: \[ AB = \begin{pmatrix} 3x + y \\ x + 2y \end{pmatrix} \] ### Step 3: Set Up the Equations Since \( AB = C \): \[ \begin{pmatrix} 3x + y \\ x + 2y \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \] This gives us two equations: 1. \( 3x + y = 4 \) (Equation 1) 2. \( x + 2y = -2 \) (Equation 2) ### Step 4: Solve the System of Equations From Equation 1: \[ y = 4 - 3x \] Substituting \( y \) in Equation 2: \[ x + 2(4 - 3x) = -2 \] \[ x + 8 - 6x = -2 \] \[ -5x + 8 = -2 \] \[ -5x = -10 \implies x = 2 \] Now substituting \( x = 2 \) back into Equation 1 to find \( y \): \[ 3(2) + y = 4 \implies 6 + y = 4 \implies y = 4 - 6 = -2 \] Thus, we have: \[ x = 2, \quad y = -2 \] ### Step 5: Substitute Values Back into Matrix A Now substituting \( x \) and \( y \) back into matrix \( A \): \[ A = \begin{pmatrix} 2 + (-2) & -2 \\ 2 & 2 - (-2) \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 2 & 4 \end{pmatrix} \] ### Step 6: Calculate \( A^2 \) Now we need to calculate \( A^2 = A \cdot A \): \[ A^2 = \begin{pmatrix} 0 & -2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 2 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \[ 0 \cdot 0 + (-2) \cdot 2 = 0 - 4 = -4 \] - First row, second column: \[ 0 \cdot (-2) + (-2) \cdot 4 = 0 - 8 = -8 \] - Second row, first column: \[ 2 \cdot 0 + 4 \cdot 2 = 0 + 8 = 8 \] - Second row, second column: \[ 2 \cdot (-2) + 4 \cdot 4 = -4 + 16 = 12 \] Thus, we have: \[ A^2 = \begin{pmatrix} -4 & -8 \\ 8 & 12 \end{pmatrix} \] ### Final Answer \[ A^2 = \begin{pmatrix} -4 & -8 \\ 8 & 12 \end{pmatrix} \] ---

To solve the problem, we need to find \( A^2 \) given that \( AB = C \). Let's break this down step by step. ### Step 1: Define the Matrices We have the matrices: \[ A = \begin{pmatrix} x+y & y \\ x & x-y \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ -2 \end{pmatrix}, \quad C = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

A=[{:(x+y, y),(x, x-y):}]_(2) B=[{:(3),(-2):}] and C=[{:(4),(-2):}] , If AB =C. then what is A^(2) equal to ?

A[{:(x+y,y),(2x,x-y):}],B =[{:(2),(-1):}] and C [{:(3),(2):}] . If AB =C then what is A^(2) equal to ?

A=[(x+y,y),(2x,x-y)] B=[(2),(-1)]and C = [(3),(2)] If AB = C, then what is A^(2) equal to ?

If 2b = a + c and y^(2) = xz , then what is x^(b-c) y^(c-a)z^(a-b) equal to ?

If x/2 + y/3 = 4 and 2/x + 3/y = 1, then what is x + y equal to ?

If (3)/(x+y)+(2)/(x-y)=2 and (9)/(x+y)-(4)/(x-y)=1 then what is (x)/(y) equal to ?

If (x)/(2)+(y)/(3)=4 "and" (2)/(x)+(3)/(y)=1 then what is x+y equal to ?

If x=2,y=1 then x^(4)+2x^(3)y-2xy^(3)-y^(4) is equal to

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. If A=[cosalphasinalpha-sinalphacosalpha] , then verify that A^T\ A=I2 ...

    Text Solution

    |

  2. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  3. A=[{:(x+y," "y),(" "x,x-y):}],B=[{:(3),(-2):}]and C=[{:(4),(-2):}]. If...

    Text Solution

    |

  4. What is the value of the determinant |{:(1," "1," "1),(1,1+xyz," "1),(...

    Text Solution

    |

  5. If |{:(x,y,0),(0,x,y),(y,0,x):}|=0, then which one of the following is...

    Text Solution

    |

  6. Consider the set A of all determinants of order 3 with entries 0 or 1 ...

    Text Solution

    |

  7. If A = [{:(cos theta,sin theta),(-sin theta,cos theta):}] then what is...

    Text Solution

    |

  8. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  9. if A=[{:(0,1),(1,0):}],"then"A^(4)=?

    Text Solution

    |

  10. The matrix A has x rows and (x+5) column. If the matrix B has y rows a...

    Text Solution

    |

  11. If A is a square matrix, then what is adj A^(T) - (adj A)^(T) equal to...

    Text Solution

    |

  12. The value of the determinant |{:("cos"^(2)(theta)/(2),"sin"^(2)(theta)...

    Text Solution

    |

  13. If a, b, c are non-zero real numbers, then the inverse of the matrix A...

    Text Solution

    |

  14. The system of equation kx+y+z=1, x +ky+z=k and x+y+kz=k^(2) has no sol...

    Text Solution

    |

  15. The value of the determinant |{:(1-alpha,alpha-alpha^(2),alpha^(@)),(1...

    Text Solution

    |

  16. The adjoint of the matrix A=[{:(1,0,2),(2,1,0),(0,3,1):}]is

    Text Solution

    |

  17. If A=({:(-2,2),(2,-2):}), then which one of the following is correct ?

    Text Solution

    |

  18. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  19. If the matrix [{:(cos theta,sin theta,0),(sin theta,cos theta,0),(0,0,...

    Text Solution

    |

  20. If A is a 2 xx 3 matrix and AB is a 2 xx 5 matrix, then B must be a

    Text Solution

    |