Home
Class 12
MATHS
The adjoint of the matrix A=[{:(1,0,2),(...

The adjoint of the matrix `A=[{:(1,0,2),(2,1,0),(0,3,1):}]`is

A

`[{:(-1,6,2),(-2,1,-4),(6,3,1):}]`

B

`[{:(1,6,-2),(-2,1,4),(6,-3,1):}]`

C

`[{:(6,1,2),(4,-1,2),(6,3,-1):}]`

D

`[{:(-6,1,2),(4,-2,1),(3,1,-6):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Cofactors The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactor for each element of the matrix. #### Cofactor Calculation 1. **Cofactor of \( a_{11} = 1 \)**: - Remove the first row and first column: \[ \text{Minor} = \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = (1)(1) - (0)(3) = 1 \] - Cofactor \( C_{11} = (-1)^{1+1} \cdot 1 = 1 \) 2. **Cofactor of \( a_{12} = 0 \)**: - Remove the first row and second column: \[ \text{Minor} = \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = (2)(1) - (0)(0) = 2 \] - Cofactor \( C_{12} = (-1)^{1+2} \cdot 2 = -2 \) 3. **Cofactor of \( a_{13} = 2 \)**: - Remove the first row and third column: \[ \text{Minor} = \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} = (2)(3) - (1)(0) = 6 \] - Cofactor \( C_{13} = (-1)^{1+3} \cdot 6 = 6 \) 4. **Cofactor of \( a_{21} = 2 \)**: - Remove the second row and first column: \[ \text{Minor} = \begin{vmatrix} 0 & 2 \\ 3 & 1 \end{vmatrix} = (0)(1) - (2)(3) = -6 \] - Cofactor \( C_{21} = (-1)^{2+1} \cdot (-6) = 6 \) 5. **Cofactor of \( a_{22} = 1 \)**: - Remove the second row and second column: \[ \text{Minor} = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = (1)(1) - (2)(0) = 1 \] - Cofactor \( C_{22} = (-1)^{2+2} \cdot 1 = 1 \) 6. **Cofactor of \( a_{23} = 0 \)**: - Remove the second row and third column: \[ \text{Minor} = \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} = (1)(3) - (0)(0) = 3 \] - Cofactor \( C_{23} = (-1)^{2+3} \cdot 3 = -3 \) 7. **Cofactor of \( a_{31} = 0 \)**: - Remove the third row and first column: \[ \text{Minor} = \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = (0)(0) - (2)(1) = -2 \] - Cofactor \( C_{31} = (-1)^{3+1} \cdot (-2) = -2 \) 8. **Cofactor of \( a_{32} = 3 \)**: - Remove the third row and second column: \[ \text{Minor} = \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = (1)(0) - (2)(2) = -4 \] - Cofactor \( C_{32} = (-1)^{3+2} \cdot (-4) = 4 \) 9. **Cofactor of \( a_{33} = 1 \)**: - Remove the third row and third column: \[ \text{Minor} = \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = (1)(1) - (0)(2) = 1 \] - Cofactor \( C_{33} = (-1)^{3+3} \cdot 1 = 1 \) ### Step 2: Form the Cofactor Matrix The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 1 & -2 & 6 \\ 6 & 1 & -3 \\ -2 & 4 & 1 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix The adjoint of matrix \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{pmatrix} 1 & 6 & -2 \\ -2 & 1 & 4 \\ 6 & -3 & 1 \end{pmatrix} \] ### Final Answer The adjoint of the matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 1 & 6 & -2 \\ -2 & 1 & 4 \\ 6 & -3 & 1 \end{pmatrix} \]

To find the adjoint of the matrix \( A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Cofactors The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactor for each element of the matrix. #### Cofactor Calculation 1. **Cofactor of \( a_{11} = 1 \)**: - Remove the first row and first column: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

The ad joint of the matrix A= [{:(1,0,2),(2,1,0),(0,3,1):}] is :

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Find the adjoint of the matrix: [(1,2),(3,4)]

The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

The adjoint of a matrix A=[(3,1,2),(4,5,-1),(3,2,-1)] is

The adjoint of matrix [(1,-4),(3,2)] is

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. The system of equation kx+y+z=1, x +ky+z=k and x+y+kz=k^(2) has no sol...

    Text Solution

    |

  2. The value of the determinant |{:(1-alpha,alpha-alpha^(2),alpha^(@)),(1...

    Text Solution

    |

  3. The adjoint of the matrix A=[{:(1,0,2),(2,1,0),(0,3,1):}]is

    Text Solution

    |

  4. If A=({:(-2,2),(2,-2):}), then which one of the following is correct ?

    Text Solution

    |

  5. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  6. If the matrix [{:(cos theta,sin theta,0),(sin theta,cos theta,0),(0,0,...

    Text Solution

    |

  7. If A is a 2 xx 3 matrix and AB is a 2 xx 5 matrix, then B must be a

    Text Solution

    |

  8. if A=[[1,2],[2,3]] and A^2-kA-I2=0 then the value of k is

    Text Solution

    |

  9. A square matrix A is called orthogonal if Where A' is the transpose ...

    Text Solution

    |

  10. For a square matrix A, which of the following properties hold ? 1. (...

    Text Solution

    |

  11. Which one of the following factors does the expansions of the determin...

    Text Solution

    |

  12. What is the adjoint of the matrix ({:(cos(-theta)-sin(-theta)),(-sin(-...

    Text Solution

    |

  13. If A and B are two invertible matrices of same order, the (AB)^-1 is (...

    Text Solution

    |

  14. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  15. What should be the value of x so that the matrix ({:(2,4),(-8,x):}) d...

    Text Solution

    |

  16. The system of equation 2x + y - 3z = 5 3x-2y+2z=5 and 5x-3y-z=16

    Text Solution

    |

  17. If u, v and w (all positive) are the p^(th), q^(th) and r^(th) terms o...

    Text Solution

    |

  18. Consider the following in respect of matrices A, B and C of same order...

    Text Solution

    |

  19. Let matrix B be the adjoint of a square matrix A, l be the identity ma...

    Text Solution

    |

  20. What is the determinant of the matrix ({:(x,y,y+z),(z,x,z+x),(y,z,x+y)...

    Text Solution

    |