Home
Class 12
MATHS
If B = [{:(3,2,0),(2,4,0),(1,1,0):}], th...

If B = `[{:(3,2,0),(2,4,0),(1,1,0):}]`, then what is adjoint of B equal to ?

A

`[{:(0,0,0),(0,0,0),(-2,-1,8):}]`

B

`[{:(0,0,-2),(0,0,-1),(0,0,8):}]`

C

`[{:(0,0,2),(0,0,1),(0,0,0):}]`

D

It does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( B = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 0 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Cofactors of Each Element The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactor for each element in the matrix \( B \). #### Cofactor \( A_{11} \): - Element: \( 3 \) (1st row, 1st column) - Remaining matrix after removing 1st row and 1st column: \( \begin{pmatrix} 4 & 0 \\ 1 & 0 \end{pmatrix} \) - Determinant: \( (4)(0) - (0)(1) = 0 \) - Cofactor: \( (-1)^{1+1} \cdot 0 = 0 \) #### Cofactor \( A_{12} \): - Element: \( 2 \) (1st row, 2nd column) - Remaining matrix: \( \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \) - Determinant: \( (2)(0) - (0)(1) = 0 \) - Cofactor: \( (-1)^{1+2} \cdot 0 = 0 \) #### Cofactor \( A_{13} \): - Element: \( 0 \) (1st row, 3rd column) - Remaining matrix: \( \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix} \) - Determinant: \( (2)(1) - (4)(1) = 2 - 4 = -2 \) - Cofactor: \( (-1)^{1+3} \cdot (-2) = -2 \) #### Cofactor \( A_{21} \): - Element: \( 2 \) (2nd row, 1st column) - Remaining matrix: \( \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \) - Determinant: \( (2)(0) - (0)(1) = 0 \) - Cofactor: \( (-1)^{2+1} \cdot 0 = 0 \) #### Cofactor \( A_{22} \): - Element: \( 4 \) (2nd row, 2nd column) - Remaining matrix: \( \begin{pmatrix} 3 & 0 \\ 1 & 0 \end{pmatrix} \) - Determinant: \( (3)(0) - (0)(1) = 0 \) - Cofactor: \( (-1)^{2+2} \cdot 0 = 0 \) #### Cofactor \( A_{23} \): - Element: \( 0 \) (2nd row, 3rd column) - Remaining matrix: \( \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \) - Determinant: \( (3)(1) - (2)(1) = 3 - 2 = 1 \) - Cofactor: \( (-1)^{2+3} \cdot 1 = -1 \) #### Cofactor \( A_{31} \): - Element: \( 1 \) (3rd row, 1st column) - Remaining matrix: \( \begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix} \) - Determinant: \( (2)(0) - (0)(4) = 0 \) - Cofactor: \( (-1)^{3+1} \cdot 0 = 0 \) #### Cofactor \( A_{32} \): - Element: \( 1 \) (3rd row, 2nd column) - Remaining matrix: \( \begin{pmatrix} 3 & 0 \\ 2 & 0 \end{pmatrix} \) - Determinant: \( (3)(0) - (0)(2) = 0 \) - Cofactor: \( (-1)^{3+2} \cdot 0 = 0 \) #### Cofactor \( A_{33} \): - Element: \( 0 \) (3rd row, 3rd column) - Remaining matrix: \( \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix} \) - Determinant: \( (3)(4) - (2)(2) = 12 - 4 = 8 \) - Cofactor: \( (-1)^{3+3} \cdot 8 = 8 \) ### Step 2: Form the Cofactor Matrix The cofactor matrix is: \[ \text{Cofactor Matrix} = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 8 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix The adjoint of matrix \( B \) is the transpose of the cofactor matrix: \[ \text{Adjoint}(B) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & -1 & 8 \end{pmatrix} \] ### Final Answer Thus, the adjoint of matrix \( B \) is: \[ \text{Adjoint}(B) = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 8 \end{pmatrix} \]

To find the adjoint of the matrix \( B = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 0 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Cofactors of Each Element The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactor for each element in the matrix \( B \). #### Cofactor \( A_{11} \): - Element: \( 3 \) (1st row, 1st column) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

If B=[{:(3,2,0),(2,4,0),(1,1,0):}] than what is adjoint of B equal to ?

If A =[{:(1,-1),(1,2):}]and B = [{:(1,0),(1,1):}] , then what is B^(-1)A^(-1) equal to ?

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

If A =[{:(1,2),(1,1):}]and B = [{:(0,-1),(1,2):}] , then what is B^(-1)A^(-1) equal to ?

adj- [{:( 1,0,2),(-1,1,-2),(0,2,1):}]=[{:(5,a,-2),(1,1,0),(-2,-2,b):}] , then [a, b] is equal to-

Suppose the vectors x_(1), x_(2) and x_(3) are the solutions of the system of linear equations, Ax=b when the vector b on the right side is equal to b_(1), b_(2) and b_(3) respectively. If x_(1)=[(1),(1),(1)], x_(2)=[(0),(2),(1)], x_(3)=[(0),(0),(1)], b_(1)=[(1),(0),(0)], b_(2)=[(0),(2),(0)] and b_(3)=[(0),(0),(2)] , then the determinant of A is equal to :

Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0 , then B is equal to

If A+2B=[(2,-4),(1,6)],A prime+B prime=[(1,2),(0,-1)], then A is equal to

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. Which one of the following factors does the expansions of the determin...

    Text Solution

    |

  2. What is the adjoint of the matrix ({:(cos(-theta)-sin(-theta)),(-sin(-...

    Text Solution

    |

  3. If A and B are two invertible matrices of same order, the (AB)^-1 is (...

    Text Solution

    |

  4. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  5. What should be the value of x so that the matrix ({:(2,4),(-8,x):}) d...

    Text Solution

    |

  6. The system of equation 2x + y - 3z = 5 3x-2y+2z=5 and 5x-3y-z=16

    Text Solution

    |

  7. If u, v and w (all positive) are the p^(th), q^(th) and r^(th) terms o...

    Text Solution

    |

  8. Consider the following in respect of matrices A, B and C of same order...

    Text Solution

    |

  9. Let matrix B be the adjoint of a square matrix A, l be the identity ma...

    Text Solution

    |

  10. What is the determinant of the matrix ({:(x,y,y+z),(z,x,z+x),(y,z,x+y)...

    Text Solution

    |

  11. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  12. Consider the following in respect of matrices A and B of same order : ...

    Text Solution

    |

  13. What is the area of the triangle with vertices (x(1),(1)/(x(1))),(x(2)...

    Text Solution

    |

  14. If B = [{:(3,2,0),(2,4,0),(1,1,0):}], then what is adjoint of B equal ...

    Text Solution

    |

  15. If A = [{:(0,1),(1,0):}], then the matrix A is/an

    Text Solution

    |

  16. If A is a identity matrix of order 3, then its inverse (A^(-1))

    Text Solution

    |

  17. A is a square matrix of order 3 such that its determinant is 4. What i...

    Text Solution

    |

  18. If A is square matrix of order n gt 1, then which one of the following...

    Text Solution

    |

  19. Let A and B be (3 xx 3) matrices with det A = 4 and det B = 3. What ...

    Text Solution

    |

  20. Let A and B be (3 xx 3) matrices with det A = 4 and det B = 3. What ...

    Text Solution

    |