Home
Class 12
MATHS
What is the value of tan^(-1)((m)/(n))-t...

What is the value of `tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))` ?

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{m-n}{m+n}\right) \), we can use the properties of inverse tangent functions. ### Step-by-Step Solution: 1. **Identify the Inverse Tangent Difference Formula**: We can use the formula for the difference of two inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] where \( a = \frac{m}{n} \) and \( b = \frac{m-n}{m+n} \). 2. **Calculate \( a - b \)**: \[ a - b = \frac{m}{n} - \frac{m-n}{m+n} \] To combine these fractions, we need a common denominator: \[ a - b = \frac{m(m+n) - n(m-n)}{n(m+n)} = \frac{m^2 + mn - nm + n^2}{n(m+n)} = \frac{m^2 + n^2}{n(m+n)} \] 3. **Calculate \( 1 + ab \)**: \[ ab = \left(\frac{m}{n}\right) \left(\frac{m-n}{m+n}\right) = \frac{m(m-n)}{n(m+n)} = \frac{m^2 - mn}{n(m+n)} \] Therefore, \[ 1 + ab = 1 + \frac{m^2 - mn}{n(m+n)} = \frac{n(m+n) + m^2 - mn}{n(m+n)} = \frac{m^2 + mn + n^2}{n(m+n)} \] 4. **Combine the Results**: Now we can substitute back into the formula: \[ \tan^{-1}\left(\frac{a - b}{1 + ab}\right) = \tan^{-1}\left(\frac{\frac{m^2 + n^2}{n(m+n)}}{\frac{m^2 + mn + n^2}{n(m+n)}}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{m^2 + n^2}{m^2 + mn + n^2}\right) \] 5. **Final Simplification**: Notice that \( m^2 + n^2 \) and \( m^2 + mn + n^2 \) can be related. The expression simplifies to: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Conclusion: Thus, the value of \( \tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{m-n}{m+n}\right) \) is: \[ \frac{\pi}{4} \]

To solve the expression \( \tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{m-n}{m+n}\right) \), we can use the properties of inverse tangent functions. ### Step-by-Step Solution: 1. **Identify the Inverse Tangent Difference Formula**: We can use the formula for the difference of two inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

Prove that: "tan"^(-1)(m)/(n)-tan^(-1)((m-n)/(m+n))=(pi)/(4). m, n gt 0

Prove that: tan^(-1)((m)/(n))+tan^(-1)((n-m)/(n+m))=[(pi)/(4)(m)/(n)>;-1(-3 pi)/(4)(m)/(n)<-1

The value of sum_(m=1)^(n) "tan"^(-1)((2m)/(m^(4) + m^(2) +2 )) is :

Find the value of tan^(n)1^(@)tan^(n)2^(@)tan^(n)3^(@)......tan^(n)88^(@)tan^(n)89^(@) .

Find the value of tan^(n)1^(@)tan^(n)2^(@)tan^(n)3^(@)......tan^(n)88^(@)tan^(n)89^(@) .

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

If theta=tan^(-1)((1)/(10))+tan^(-1)((1)/(9))+...+tan^(-1)(1)+tan^(-1)(2)+...+tan^(-1)(10)+tan^(-1)(11) .If tan theta=(m)/(n) (where m,n are coprime) then the value of (m+n) is equal to

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. If median of the DeltaABC through A is perpendicular to BC, then which...

    Text Solution

    |

  2. If cos^(-1)((1)/(sqrt(5)))=theta, then what is the value of "cosec"^(-...

    Text Solution

    |

  3. What is the value of tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n)) ?

    Text Solution

    |

  4. tan(cos^-1 x) is equal to

    Text Solution

    |

  5. If sin^(-1)x - cos^(-1) x = (pi)/(6), then what is the value of x ?

    Text Solution

    |

  6. In a triangle ABC, b = sqrt(3) cm, c = 1 cm, angle A = 30^(@), what is...

    Text Solution

    |

  7. Let -1<=x<=1 If cos(sin^(-1) x)=1/2, then how many value does tan(cos^...

    Text Solution

    |

  8. The equation sin^(-1)(3x - 4x^(3)) = 3 sin^(-1) (x) is true for all va...

    Text Solution

    |

  9. Which one of the following in not correct ?

    Text Solution

    |

  10. If sin^(-1) x + sin^(-1)y = pi//2 and cos^(-1) x - cos^(-1) y = 0, the...

    Text Solution

    |

  11. ABC is a triangle is which AB = 6 cm, BC = 8 cm and CA = 10 cm. What ...

    Text Solution

    |

  12. If the sides of a triangle are 6 cm, 10 cm and 14 cm, then what is the...

    Text Solution

    |

  13. For finding the area of a triangle ABC, which of the following entitie...

    Text Solution

    |

  14. The formula sin^(-1){2xsqrt(1-x^(2))}=2 sin^(-1) x is true for all val...

    Text Solution

    |

  15. If sin A = 1/sqrt(5), cos B = 3/sqrt(10), A, B being positive acute an...

    Text Solution

    |

  16. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x...

    Text Solution

    |

  17. If in a DeltaABC, cos B = (sin A)/(2 sin C), then the triangle is

    Text Solution

    |

  18. If sin^(-1)x + cot^(-1)(1//2)=pi//2, then what is the value of x ?

    Text Solution

    |

  19. In a DeltaABC, a + b = 3 (1 + sqrt(3)) cm and a - b = 3 (1 - sqrt(3)) ...

    Text Solution

    |

  20. What is the principle value of "cosec"^(-1)(-sqrt(2)) ?

    Text Solution

    |