Home
Class 12
MATHS
The formula sin^(-1){2xsqrt(1-x^(2))}=2 ...

The formula `sin^(-1){2xsqrt(1-x^(2))}=2 sin^(-1) x` is true for all values of x lying in the interval

A

[-1, 1]

B

[0, 1]

C

[-1, 0]

D

`[-1// sqrt(2), 1// sqrt(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the formula \( \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x) \) and find the interval of \( x \) for which this holds true. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \sin(\theta) \). Then, we can rewrite the left-hand side: \[ \sin^{-1}(2x\sqrt{1-x^2}) = \sin^{-1}(2\sin(\theta)\sqrt{1-\sin^2(\theta)}) \] Since \( \sqrt{1-\sin^2(\theta)} = \cos(\theta) \), we have: \[ \sin^{-1}(2\sin(\theta)\cos(\theta)) \] 2. **Using the Double Angle Identity**: Recall that \( 2\sin(\theta)\cos(\theta) = \sin(2\theta) \). Therefore, we can simplify: \[ \sin^{-1}(\sin(2\theta)) = 2\theta \] This is valid as long as \( 2\theta \) is within the range of \( \sin^{-1} \), which is \( -\frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2} \). 3. **Finding the Range of \( \theta \)**: From the condition \( -\frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2} \), we can divide by 2: \[ -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \] 4. **Relating \( \theta \) to \( x \)**: Since \( \theta = \sin^{-1}(x) \), we can find the range of \( x \): - The sine function is increasing in the interval \( -\frac{\pi}{4} \) to \( \frac{\pi}{4} \). - Therefore, we have: \[ \sin\left(-\frac{\pi}{4}\right) \leq x \leq \sin\left(\frac{\pi}{4}\right) \] - This gives us: \[ -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \] 5. **Conclusion**: The formula \( \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x) \) is true for all values of \( x \) in the interval: \[ x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \]

To solve the problem, we need to verify the formula \( \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x) \) and find the interval of \( x \) for which this holds true. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \sin(\theta) \). Then, we can rewrite the left-hand side: \[ \sin^{-1}(2x\sqrt{1-x^2}) = \sin^{-1}(2\sin(\theta)\sqrt{1-\sin^2(\theta)}) \] ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

The formula sin^(-1){2x(1-x^(2))}=2sin^(-1)x is true for all values of x lying in the interval

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

The equation sin^(-1)(3x - 4x^(3)) = 3 sin^(-1) (x) is true for all value of x lying in which one of the following intervals ?

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx

The equation 2 cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2))) is valid for all values of x satisfying

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

The relation int(sin2x+cos2x)=(1)/(sqrt(2))sin(2x-a)+c is true for

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. If the sides of a triangle are 6 cm, 10 cm and 14 cm, then what is the...

    Text Solution

    |

  2. For finding the area of a triangle ABC, which of the following entitie...

    Text Solution

    |

  3. The formula sin^(-1){2xsqrt(1-x^(2))}=2 sin^(-1) x is true for all val...

    Text Solution

    |

  4. If sin A = 1/sqrt(5), cos B = 3/sqrt(10), A, B being positive acute an...

    Text Solution

    |

  5. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x...

    Text Solution

    |

  6. If in a DeltaABC, cos B = (sin A)/(2 sin C), then the triangle is

    Text Solution

    |

  7. If sin^(-1)x + cot^(-1)(1//2)=pi//2, then what is the value of x ?

    Text Solution

    |

  8. In a DeltaABC, a + b = 3 (1 + sqrt(3)) cm and a - b = 3 (1 - sqrt(3)) ...

    Text Solution

    |

  9. What is the principle value of "cosec"^(-1)(-sqrt(2)) ?

    Text Solution

    |

  10. If "sin"^(-1)(5)/(x) +"sin"^(-1)(12)/(x)=(pi)/(2), then what is the va...

    Text Solution

    |

  11. If angles A, B and C are in AP, then what is sin A + 2 sin B + sin C e...

    Text Solution

    |

  12. Statement I : If -1 le x lt 0, then cos(sin^(-1)x) = -sqrt(1-x^(2)) ...

    Text Solution

    |

  13. In a triangle ABC, BC = sqrt(39), AC = 5 and AB = 7. What is the measu...

    Text Solution

    |

  14. What is the value of "sin"^(-1)(4)/(5) + 2 "tan"^(-1)(1)/(3) ?

    Text Solution

    |

  15. ABC is a triangle in which BC = 10 cm, CA = 6 cm and AB = 8 cm. Which...

    Text Solution

    |

  16. In a DeltaABC, if c = 2, A = 120^(@), a = sqrt(6), then what is C equa...

    Text Solution

    |

  17. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  18. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  19. ABC is a triangle right-angled at B. The hypotenuse (AC) is four the p...

    Text Solution

    |

  20. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |