Home
Class 12
MATHS
If sin A = 1/sqrt(5), cos B = 3/sqrt(10)...

If sin A = 1/`sqrt(5)`, cos B = 3/`sqrt(10)`, A, B being positive acute angles, then what is (A + B) equal to ?

A

`pi//6`

B

`pi//4`

C

`pi//3`

D

`pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( A + B \) given that \( \sin A = \frac{1}{\sqrt{5}} \) and \( \cos B = \frac{3}{\sqrt{10}} \), we will use the sine addition formula: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] ### Step 1: Calculate \( \sin A \) and \( \cos B \) We are given: \[ \sin A = \frac{1}{\sqrt{5}} \] \[ \cos B = \frac{3}{\sqrt{10}} \] ### Step 2: Find \( \cos A \) Using the Pythagorean identity: \[ \cos A = \sqrt{1 - \sin^2 A} \] Substituting \( \sin A \): \[ \cos A = \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 3: Find \( \sin B \) Using the Pythagorean identity: \[ \sin B = \sqrt{1 - \cos^2 B} \] Substituting \( \cos B \): \[ \sin B = \sqrt{1 - \left(\frac{3}{\sqrt{10}}\right)^2} = \sqrt{1 - \frac{9}{10}} = \sqrt{\frac{1}{10}} = \frac{1}{\sqrt{10}} \] ### Step 4: Substitute values into the sine addition formula Now substituting \( \sin A \), \( \cos B \), \( \cos A \), and \( \sin B \) into the sine addition formula: \[ \sin(A + B) = \left(\frac{1}{\sqrt{5}}\right) \left(\frac{3}{\sqrt{10}}\right) + \left(\frac{2}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{10}}\right) \] Calculating each term: \[ \sin(A + B) = \frac{3}{\sqrt{5} \cdot \sqrt{10}} + \frac{2}{\sqrt{5} \cdot \sqrt{10}} = \frac{3 + 2}{\sqrt{5} \cdot \sqrt{10}} = \frac{5}{\sqrt{5} \cdot \sqrt{10}} \] ### Step 5: Simplify \( \sin(A + B) \) We can simplify \( \sin(A + B) \): \[ \sin(A + B) = \frac{5}{\sqrt{50}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 6: Find \( A + B \) Since \( \sin(A + B) = \frac{1}{\sqrt{2}} \), we know that: \[ A + B = \frac{\pi}{4} \] Thus, the final answer is: \[ \boxed{\frac{\pi}{4}} \]

To find the value of \( A + B \) given that \( \sin A = \frac{1}{\sqrt{5}} \) and \( \cos B = \frac{3}{\sqrt{10}} \), we will use the sine addition formula: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] ### Step 1: Calculate \( \sin A \) and \( \cos B \) ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

If sin A=(1)/(sqrt(10)) and sin B=(1)/(sqrt(5)), where A and B are positive acute angles,then A+B is equal to

If sin A=(2)/(sqrt(5)) and cos B=(1)/(sqrt(10)), where A and B are acute angles,then what is the value of A+B

If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)) , where A and B are positive acute angles, then A+B=?

Let "sin"(A+B)=sqrt(3)/(2)and"cos"B=sqrt(3)/(2) , where A, B are acute angles. What is "tan"(2A-B) equal to ?

Sin (A + B) = 1/(sqrt2) Cos(A - B) = (sqrt3)/2

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

If sin A=(1)/(sqrt(5)) and sin B=(1)/(sqrt(10)) ,find the values of cos A and cos B .Hence using the formula cos(A+B)=cos A cos B-sin A sin B, show that (A+B)=45^(@).

If sin A = 1/sqrt (3) and sin B = 1/sqrt (5) find the value of tan ( (A+B)/2).cot ( (A-B)/2)

If sin A + sin B = sqrt (3) (cos B-cos A) then sin3A + sin3B =

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. For finding the area of a triangle ABC, which of the following entitie...

    Text Solution

    |

  2. The formula sin^(-1){2xsqrt(1-x^(2))}=2 sin^(-1) x is true for all val...

    Text Solution

    |

  3. If sin A = 1/sqrt(5), cos B = 3/sqrt(10), A, B being positive acute an...

    Text Solution

    |

  4. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x...

    Text Solution

    |

  5. If in a DeltaABC, cos B = (sin A)/(2 sin C), then the triangle is

    Text Solution

    |

  6. If sin^(-1)x + cot^(-1)(1//2)=pi//2, then what is the value of x ?

    Text Solution

    |

  7. In a DeltaABC, a + b = 3 (1 + sqrt(3)) cm and a - b = 3 (1 - sqrt(3)) ...

    Text Solution

    |

  8. What is the principle value of "cosec"^(-1)(-sqrt(2)) ?

    Text Solution

    |

  9. If "sin"^(-1)(5)/(x) +"sin"^(-1)(12)/(x)=(pi)/(2), then what is the va...

    Text Solution

    |

  10. If angles A, B and C are in AP, then what is sin A + 2 sin B + sin C e...

    Text Solution

    |

  11. Statement I : If -1 le x lt 0, then cos(sin^(-1)x) = -sqrt(1-x^(2)) ...

    Text Solution

    |

  12. In a triangle ABC, BC = sqrt(39), AC = 5 and AB = 7. What is the measu...

    Text Solution

    |

  13. What is the value of "sin"^(-1)(4)/(5) + 2 "tan"^(-1)(1)/(3) ?

    Text Solution

    |

  14. ABC is a triangle in which BC = 10 cm, CA = 6 cm and AB = 8 cm. Which...

    Text Solution

    |

  15. In a DeltaABC, if c = 2, A = 120^(@), a = sqrt(6), then what is C equa...

    Text Solution

    |

  16. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  17. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  18. ABC is a triangle right-angled at B. The hypotenuse (AC) is four the p...

    Text Solution

    |

  19. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  20. Consider the following I. "cosec"^(-1)(-(2)/(sqrt(3)))=-(pi)/(3) I...

    Text Solution

    |