Home
Class 12
MATHS
If angles A, B and C are in AP, then wha...

If angles A, B and C are in AP, then what is sin A + 2 sin B + sin C equal to ?

A

`4 sin B cos^(2)((A-C)/(2))`

B

`4 sin B cos^(2)((A-C)/(4))`

C

`4 sin (2B) cos^(2)((A-C)/(2))`

D

`4 sin (2B) cos^(2)((A-C)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin A + 2 \sin B + \sin C \) given that angles \( A, B, \) and \( C \) are in arithmetic progression (AP). ### Step-by-step Solution: 1. **Understanding the AP Condition**: Since \( A, B, C \) are in AP, we can express this relationship mathematically: \[ 2B = A + C \] 2. **Using the Triangle Sum Property**: We know that in any triangle, the sum of the angles is \( 180^\circ \): \[ A + B + C = 180^\circ \] 3. **Substituting for C**: From the equation \( A + B + C = 180^\circ \), we can express \( C \) in terms of \( A \) and \( B \): \[ C = 180^\circ - A - B \] 4. **Substituting C in the AP Condition**: Now, substituting \( C \) in the AP condition: \[ 2B = A + (180^\circ - A - B) \] Simplifying this gives: \[ 2B = 180^\circ - B \implies 3B = 180^\circ \implies B = 60^\circ \] 5. **Finding A and C**: Since \( B = 60^\circ \), we can find \( A \) and \( C \): \[ A + C = 2B = 120^\circ \] Also, since \( A + B + C = 180^\circ \): \[ A + 60^\circ + C = 180^\circ \implies A + C = 120^\circ \] This confirms our earlier calculation. 6. **Using Sine Addition**: Now we can express \( \sin A + 2 \sin B + \sin C \): \[ \sin A + 2 \sin B + \sin C = \sin A + 2 \sin(60^\circ) + \sin C \] We know \( \sin(60^\circ) = \frac{\sqrt{3}}{2} \), so: \[ = \sin A + 2 \cdot \frac{\sqrt{3}}{2} + \sin C = \sin A + \sqrt{3} + \sin C \] 7. **Using the Sine Addition Formula**: Since \( A + C = 120^\circ \), we can use the sine addition formula: \[ \sin(A + C) = \sin(120^\circ) = \frac{\sqrt{3}}{2} \] Therefore, we can express \( \sin A + \sin C \) using the sine addition formula: \[ \sin A + \sin C = 2 \sin\left(\frac{A + C}{2}\right) \cos\left(\frac{A - C}{2}\right) \] Here, \( \frac{A + C}{2} = 60^\circ \) and \( \sin(60^\circ) = \frac{\sqrt{3}}{2} \). 8. **Final Calculation**: Thus, we have: \[ \sin A + \sin C = 2 \cdot \frac{\sqrt{3}}{2} \cdot \cos\left(\frac{A - C}{2}\right) = \sqrt{3} \cdot \cos\left(\frac{A - C}{2}\right) \] Therefore: \[ \sin A + 2 \sin B + \sin C = \sqrt{3} \cdot \cos\left(\frac{A - C}{2}\right) + \sqrt{3} \] 9. **Conclusion**: Since \( \cos\left(\frac{A - C}{2}\right) \) can vary depending on the specific values of \( A \) and \( C \), we can conclude that: \[ \sin A + 2 \sin B + \sin C = 2\sqrt{3} \] when \( A = C \).

To solve the problem, we need to find the value of \( \sin A + 2 \sin B + \sin C \) given that angles \( A, B, \) and \( C \) are in arithmetic progression (AP). ### Step-by-step Solution: 1. **Understanding the AP Condition**: Since \( A, B, C \) are in AP, we can express this relationship mathematically: \[ 2B = A + C ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

If A + B + C = 180^(@) , then what is sin 2A - sin 2N - sin 2C equal to ?

if A+B+C=180^(@), then what is sin2A-sin2B-sin2C equal to?

If A+B-C=3 pi, then sin A+sin B-sin C is equal to -

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If sin2B=2sin B then angle B equal to

If the angles A,B,C are in A.P., prove that cot B=("sin" A-"sin" C)/(cos C-cos A)

If angle A,B,C of Delta ABC form an increasing AP,then sin B=

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. What is the principle value of "cosec"^(-1)(-sqrt(2)) ?

    Text Solution

    |

  2. If "sin"^(-1)(5)/(x) +"sin"^(-1)(12)/(x)=(pi)/(2), then what is the va...

    Text Solution

    |

  3. If angles A, B and C are in AP, then what is sin A + 2 sin B + sin C e...

    Text Solution

    |

  4. Statement I : If -1 le x lt 0, then cos(sin^(-1)x) = -sqrt(1-x^(2)) ...

    Text Solution

    |

  5. In a triangle ABC, BC = sqrt(39), AC = 5 and AB = 7. What is the measu...

    Text Solution

    |

  6. What is the value of "sin"^(-1)(4)/(5) + 2 "tan"^(-1)(1)/(3) ?

    Text Solution

    |

  7. ABC is a triangle in which BC = 10 cm, CA = 6 cm and AB = 8 cm. Which...

    Text Solution

    |

  8. In a DeltaABC, if c = 2, A = 120^(@), a = sqrt(6), then what is C equa...

    Text Solution

    |

  9. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  10. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  11. ABC is a triangle right-angled at B. The hypotenuse (AC) is four the p...

    Text Solution

    |

  12. ABC is a right angles triangle at B. The hypotenuse AC is four times t...

    Text Solution

    |

  13. Consider the following I. "cosec"^(-1)(-(2)/(sqrt(3)))=-(pi)/(3) I...

    Text Solution

    |

  14. If sin ("sin"^(-1)(1)/(5)+ "cos"^(-1)x)=1, then what is x equal to ?

    Text Solution

    |

  15. What is the principle value of sec^(-1)((2)/(sqrt(3))) ?

    Text Solution

    |

  16. In any triangle ABC, the sides are 6 cm, 10 cm and 14 cm. Then the tri...

    Text Solution

    |

  17. In a triangle ABC, if A = tan^(-1) 2 and B = tan^(-1) 3, then C is equ...

    Text Solution

    |

  18. If the sides of a triangle are in the ratio 2 : sqrt(6) : 1 + sqrt(3),...

    Text Solution

    |

  19. In a triangle ABC, A = 8, b = 10 and c = 12. What is the angle C equal...

    Text Solution

    |

  20. The sides a, b, c of a triangle ABC are in arithmetic progression and ...

    Text Solution

    |