Home
Class 12
MATHS
If x and y are positive and xygt1, then ...

If x and y are positive and `xygt1`, then what is `tan^(-1)x+tan^(-1)y` to?

A

`tan^(-1)((x+y)/(1-xy))`

B

`pi + tan^(-1)((x+y)/(1-xy))`

C

`pi-tan^(-1)((x+y)/(1-xy))`

D

`tan^(-1)((x-y)/(1+xy))`

Text Solution

Verified by Experts

The correct Answer is:
B

`tan^(-1)x+tan^(-1)y=tan^(-1)[(x+y)/(1-xy)], "where xy" lt 1`
And if `x lt 0, y lt 0 and xy gt 1`, then
`tan^(-1)x + tan^(-1)y = pi + tan^(-1)((x+y)/(1-xy))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)y is equal to

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

Knowledge Check

  • If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

    A
    `x gt 2, y lt 2`
    B
    `x lt 3, y ge 2`
    C
    `x le 2, y le 7`
    D
    `x gt 2, y gt 7`
  • If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

    A
    3
    B
    4
    C
    5
    D
    6
  • If x + y + z=xyz and x,y,z gt 0 , then the value of tan^(-1)x + tan^(-1)y + tan^(-1)z is equal to

    A
    `pi//2`
    B
    `pi//4`
    C
    `pi`
    D
    `-pi//4`
  • Similar Questions

    Explore conceptually related problems

    If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

    If k be a positive integer , show that the equation tan^-1 x+tan^-1 y= tan^-1 k has no positive integral solution.

    If x=2. y=3 , then tan^(-1)x+tan^(-1)y=

    If x and y are positive acute angles such that (x+y) and (x-y) satisfy the equation tan^(2) theta - 4 tan theta +1=0 , then

    If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=